地球科学进展 ›› 2019, Vol. 34 ›› Issue (12): 1243 -1251. doi: 10.11867/j.issn.1001-8166.2019.12.1243

所属专题: 深海科学研究专刊

深水珊瑚研究进展 上一篇    下一篇

冷水珊瑚测年与大洋中—深层水碳储库
黄恩清( ),孔乐,田军   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2019-11-19 修回日期:2019-12-01 出版日期:2019-12-10
  • 基金资助:
    同济大学海洋地质国家重点实验室自主项目(MG20190101)

Dating Methods of Cold-water Corals and Their Application in Reconstructing Carbon-reservoir Ages of Intermediate and Deep Oceans

Enqing Huang( ),Le Kong,Jun Tian   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
  • Received:2019-11-19 Revised:2019-12-01 Online:2019-12-10 Published:2020-02-12
  • About author:Huang Enqing (1984-), male, Fuqing City, Fujian Province, Associate professor. Research areas include paleoceanography and paleoclimatology. E-mail: ehuang@tongji.edu.cn
  • Supported by:
    the State Key Laboratory of Marine Geology, Tongji University(MG20190101)

冷水珊瑚古环境应用研究的首要问题是建立精确的年龄模式。目前常用的珊瑚定年技术包括U/Th,AMS 14C和210Pb测年,其中前两种方法尤为重要。不同冷水珊瑚属种适用不同的定年方法。高镁方解石质的竹节柳珊瑚可用AMS 14C和210Pb测试方法定年。竹节柳珊瑚具有清晰的生长纹层,厘定其年龄模式后,可以成为中—深层大洋环境演变的高分辨率记录载体。文石质石珊瑚同时适用于U/Th和AMS 14C测年方法,在古海洋研究中有特殊价值。由于u/Th测年可以提供样品的绝对年龄,因此进一步计算可获得中—深层大洋的碳储库年龄,这为探究轨道和千年时间尺度上大洋—大气碳交换这一重大学术问题提供了可靠资料。冷水珊瑚测年数据发现末次冰消期时,赤道大西洋和南大洋中层水的碳储库年龄在Heinrich Stadial 1事件结束前后突然大幅度减小,很可能表示深部大洋一部分无机碳转移进入了大气圈,或者代表Heinrich Stadial 1事件前后大西洋中层水分别主要受南半球和北半球潜沉水团的影响。

Establishing a precise chorology is a critical issue when employing cold-water coral as paleoenvironmental archives. Currently, U-Th, 14C and 210Pb dating techniques are the most frequently used methods. The high-magnesium calcite skeleton of bamboo coral has clear growth bands, which is appropriate for 14C and 210Pb dating methods and holds a great potential to be high-resolution archives of mid-to-deep ocean evolution. Aragonitic stony coral is appropriate for both U-Th and 14C dating methods, which is valuable in paleoceanographic research. Because the U-Th method can provide the absolute chronology of coral samples, it can further be used to calculate the 14C age of ocean carbon reservoirs. Therefore, U-Th and 14C dating results of stony coral are currently the most reliable data for exploring the evolution of ocean carbon reservoirs through the Last Glacial Maximum to the present. It has been found that the 14C ventilation ages of intermediate water masses of the equatorial Atlantic and Southern Ocean significantly decreased at the end of the Heinrich Stadial 1. This suggests a massive carbon transfer from deep oceans to the atmosphere, or the Atlantic intermediate depths were ventilated by the southern- and the northern-sourced water masses, respectively, before and after the Heinrich Stadial 1.

中图分类号: 

图1 冷水珊瑚不同属种的寿命(蓝色)以及不同定年技术的测年范围(褐色)[ 1 ]
Fig.1 Lifespan of several types of cold-water coral (blue), and the relative age span of different dating techniques used in chronology studies (dark brown)[ 1 ]
图2 南海西沙海区冷水珊瑚照片
(a),(b)为竹节柳珊瑚骨骼样品;(c),(d)为石珊瑚骨骼样品;其中竹节柳珊瑚样品包含碳酸盐骨骼(白色)和蛋白质结节(黑色)两个部分
Fig.2 Photos of cold-water coral from Xisha, South China Sea
(a)~(d) are bamboo and stony coral, respectively. Fossil of bamboo coral comprises of two components, the carbonate internodes(white) and the gorgonin nodes(black)
Table 1 U/Th14C dating results of cold-water corals from Xisha, South China Sea
图3 冷水珊瑚记录的核爆信号[ 19 , 20 , 21 , 22 , 23 ]
其中同一个竹节柳珊瑚样品的碳酸盐骨骼和蛋白质结节AMS 14C年龄出现较明显的偏差
Fig.3 Recognize the 14C bomb signal in cold-water coral samples[ 19 , 20 , 21 , 22 , 23 ]
Note the apparent offset between 14C ages of carbonate skeleton and gorgonin nodes belonging to a same bamboo coral sample
图4 0~25 ka BP期间大气CO2浓度及大气Δ14C水平以及变化
(a)大气CO 2浓度 [ 29 , 30 ],在冰消期的Heinrich Stadial 1和新仙女木时期出现CO 2浓度的上升;(b)重建的大气Δ 14C [ 17 ]和模拟的大气Δ 14C [ 32 ]波动历史比较;其中模拟大气Δ 14C水平来自模型BICYCLE的输出结果,假定海洋—大气碳交换速率不变,利用宇宙射线速率波动进行估算;可以看出,重建和模拟结果并不吻合,说明海洋—大气碳交换速率出现过巨大波动
Fig.4 Atmospheric CO2 and Δ14C changes between 25 and 0 ka BP
(a) Reconstructed atmospheric CO 2 concentrations [ 29 , 30 ], which rose in two stages over the last deglaciation: A first 50×10 -6 rise during Heinrich Stadial 1 and a later 25×10 -6 rise during the Younger Dryas(YD) interval; (b) A comparison of reconstructed and simulated atmospheric Δ 14C changes [ 17 , 32 ]. The model output is from the BICYCLE model, which was forced by changing production rates of cosmic rays and a constant carbon exchange rate between the atmosphere and the ocean. The offset between the reconstruction and the simulation suggests a significant change in the carbon exchange rate between the atmosphere and the ocean in the past
图5 根据冷水珊瑚和有孔虫重建的2.5万年以来中深层海洋碳储库年龄变化
(a)冷水珊瑚和深海沉积物站位图,背景为工业革命之前的海水Δ 14C值 [ 57 ];(b),(c)冷水珊瑚估算的赤道大西洋和德雷克海峡中—深层海水ΔΔ 14C值变化 [ 37 , 58 ];(d),(e)有孔虫估算的南大洋深部水团ΔΔ 14C值变化 [ 36 , 59 ];(f)重建的大气Δ 14C波动历史 [ 17 ];ΔΔ 14C表示海水与大气Δ 14C值的差值;注意Heinrich Stadial 1事件结束时(约1.46万年前),不同深度海水ΔΔ 14C值均出现大幅度下降
Fig.5 Changes of intermediate-deep ocean carbon reservoirs ages between 25 and 0 ka BP, derived from cold-water coral and foraminifera
(a) Geographic locations and water depths of coral samples and sediment cores, plotted against the pre-industrial distribution of seawater Δ 14C values [ 57 ]; (b),(c) Reconstructed intermediate-deep ocean ΔΔ 14C values in the equatorial tropical Atlantic and the Drake Strait, derived from cold-water coral samples [ 37 , 58 ]; (d),(e) Reconstructed ΔΔ 14C values of the deep Southern Ocean, derived from foraminiferal samples [ 36 , 59 ]; (f) Reconstructed atmospheric Δ 14C changes [ 17 ]; ΔΔ 14C indicates the Δ 14C value offset between the contemporary ocean and atmosphere; Note a significant decline of ΔΔ 14C values at different water depths occurred at the end of the Heinrich Stadial 1 (about 14.6 ka BP)
1 Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for paleoceanography[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99:184-198.
2 Roark E B, Guilderson T, Dunbar R B, et al. Extreme longevity in proteinaceous deep-sea corals[J]. Proceedings of the National Academy of Sciences, 2009, 106(13): 5 204-5 208.
3 Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2 401-2 416.
4 Lomitschka M, Mangini A. Precise Th/U-dating of small and heavily coated samples of deep-sea corals[J]. Earth and Planetary Science Letters, 1999, 170(4):391-401.
5 Burke A, Robinson L F, McNichol A, et al. Reconnaissance dating: A new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(11):1 510-1 520.
6 Adkins J F, Henderson G M, Wang S-L, et al. Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrate[J]. Earth and Planetary Science Letters, 2004, 227(3/4):481-490.
7 Andrews A H, Stone R P, Lundstrom C C, et al. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating[J]. Marine Ecology Progress Series, 2009, 397:173-185.
8 Sabatier P, J-L Reyss, Hall-Spencer J M, et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef[J]. Biogeosciences, 2012, 9(3):1 253-1 265.
9 Cochran J K, Livingston H D, Hirschberg D J, et al. Natural and anthropogenic radionuclide distributions in the northwest Atlantic Ocean[J]. Earth and Planetary Science Letters, 1987,84(2/3):135-152.
10 Guo L, Santschi P, Baskaran M, et al. Distribution of dissolved and particulate 230Th and 232Th in seawater from the Gulf of Mexico and off Cape Hatteras as measured by SIMS[J]. Earth and Planetary Science Letters,1995, 133(1/2):117-128.
11 Nozaki Y, Yang H-S, Yamada M. Scavenging of thorium in the ocean[J]. Journal of Geophysical Research, 1987, 92(C1): 772-778.
12 Roy-Barman M, Chen J H, Wasserburg G J. 230Th-232Th systematics in the central Pacific Ocean: The sources and fates of thorium[J]. Earth and Planetary Science Letters, 1996,139(3/4): 351-363.
13 Moore W S. The thorium isotope content of ocean water[J]. Earth and Planetary Science Letters, 1981, 53(3): 419-426.
14 Henderson G M. Seawater 234U/238U during the last 800 thousand years[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 97-110.
15 Robinson L F, Adkins J F, Fernandez D P, et al. Primary U-distribution in scleractinian corals and its implications for U-series dating[J]. Geochemistry, Geophysics, Geosystems, 2006,7(5). DOI: 10.01029/02005GC001138.
doi: 10.01029/02005GC001138    
16 Reimer P J, Baillie M G L, Bard E, et al. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP[J]. Radiocarbon, 2009, 51: 1 111-1 150.
17 Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1 869-1 887.
18 Wang N, Shen C D, Sun W D, et al. Penetration of bomb 14C into the deepest ocean trench[J]. Geophysical Research Letters, 2019, 46(10): 5 413-5 419.
19 Prouty N G, Roark E B, Andrews A H, et al. Age, growth rates and paleoclimate studies in deep-Sea corals of the United States[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep-Sea Coral and Sponge Ecosystems of the United States. Silver Spring, 2017: 298-308.
20 Sherwood O A, Scott D B, Risk M J. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis) [J]. Marine Ecology Progress Series, 2005, 301:129-134.
21 Andrews A H, Cordes E E, Mahoney M M, et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska[J]. Hydrobiologia, 2002, 471(1):101-110.
22 Roark E B, Guilderson T P, Dunbar R B, et al. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals[J]. Marine Ecology Progress Series, 2006, 327:1-14.
23 Parrish F A, Roark E B. Growth validation of gold coral Gerardia sp. in the Hawaiian Archipelago[J]. Marine Ecology Progress Series, 2009, 397:163-172.
24 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919    
25 Hill T M, Spero H J, Guilderson T, et al. Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the ‘lines method’[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(4). DOI:10.1029/2010GC003443.
doi: 10.1029/2010GC003443    
26 Saenger C, Watkins J M. A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes[J]. Paleoceanography, 2016, 31(6): 789-799.
27 Petit R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399(6 735): 429-436.
28 Sigman D, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 446(7 302): 47-55.
29 Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291(5 501): 112-114.
30 Lemieux-Dudon B, Blayo E, J-R Petit, et al. Consistent dating for Antarctic and Greenland ice cores[J]. Quaternary Science Reviews, 2010, 29(19/20): 8-20.
31 Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6 806): 859-869.
32 K?hler P, Fischer H, Munhoven G, et al. Quantitative interpretation of atmospheric carbon records over the last glacial termination[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI:10.1029/2004GB002345.
doi: 10.1029/2004GB002345    
33 Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water[J]. Paleoceanography, 1999, 14(5): 571-588.
34 Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography, 2006, 21(2). DOI:10.1029/2005PA00-1154.
doi: 10.1029/2005PA00-1154    
35 Tschumi T, Joos F, Gehlen M, et al. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise[J]. Climate of the Past, 2011, 7(3): 771-800.
36 Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5 982): 1 147-1 151.
37 Burke A, Robinson L F. The Southern Ocean’s role in carbon exchange during the last deglaciation[J]. Science, 2012, 335(6 068): 557-561.
38 Anderson R F, Ali S, Bradtmiller L I, et al. Wind driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5 920):1 443-1 446.
39 Smith H J, Fischer H, Whalen M, et al. Dual modes of the carbon cycle since the Last Glacial Maximum[J]. Nature, 1999, 400(6 741): 248-250.
40 Schmitt J, Schneider R, Elsig J, et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6 082): 711-714.
41 Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations[J]. Science, 2002, 296(5 567): 522-525.
42 Broecker W S, Barker S. A 190‰ drop in atmosphere’s Δ14C during the “Mystery Interval” (17.5-14.5 kyr) [J]. Earth and Planetary Science Letters, 2007, 256(1):90-99.
43 Southon J, Noronha A L, Cheng H, et al. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82[J]. Quaternary Science Reviews, 2012, 33:32-41.
44 Cheng H, Edwards R L, Southon J, et al. Atmosphere 14C/12C changes during the last glacial period from Hulu Cave[J]. Science, 2018, 362(6 420): 1 293-1 297.
45 Marchitto T M, Lehman S J, Ortiz J D, et al. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise[J]. Science, 2007, 316(5 830):1 456-1 440.
46 Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1): 244-254.
47 Thornalley D J R, Barker S, Broecker W, et al. The deglacial evolution of north Atlantic deep convection[J]. Science, 2011, 331(6 014): 202-205.
48 Stott L, Southon J, Timmermann A, et al. Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation[J]. Paleoceanography, 2009, 24(2). DOI:10.1029/2008PA001690.
doi: 10.1029/2008PA001690    
49 De Pol-Holz R, Keigwin L D, Southon J, et al. No signature of abyssal carbon in intermediate waters off Chile during deglaciation[J]. Nature Geoscience, 2010, 3(3): 192-195.
50 Mangini A, Godoy J M, Godoy M L, et al. Deep-sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the younger Dryas[J]. Earth and Planetary Science Letters, 2010, 293(3/4):269-276.
51 Rose K A, Sikes E L, Guilderson T P, et al. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release[J]. Nature, 2010, 466(7 310): 1 093-1 097.
52 Cléroux C, deMenocal P, Guilderson T. Deglacial radiocarbon history of tropical Atlantic thermocline waters: Absence of CO2 reservoir purging signal[J]. Quaternary Science Reviews, 2011, 30(15): 1 875-1 882.
53 Sortor R N, Lund D C. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic[J]. Earth and Planetary Science Letters, 2011, 310(1): 65-72.
54 Barker S, Broecker W, Clark E, et al. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone[J]. Paleoceanography, 2007, 22(2). DOI:10.1029/2006PA001354.
doi: 10.1029/2006PA001354    
55 Sarnthein M, Grootes P M, Kennett J P, et al. ^ 1^ 4C reservoir ages show deglacial changes in ocean currents and carbon cycle[J]. Geophysical Monograph-American Geophysical Union, 2007, 173: 175.
56 Franke J, Paul A, Schulz M. Modeling variations of marine reservoir ages during the last 45000 years[J]. Climate of the Past, 2008, 4(1): 125-136.
57 Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004,18(4). DOI:10.1029/2004GB002247.
doi: 10.1029/2004GB002247    
58 Chen T Y, Robinson L F, Burke A, et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 2015, 349(6 255): 1 537-1 540.
59 Barker S, Knorr G, Vautravers M J, et al. Extreme deepening of the Atlantic overturning circulation during deglaciation[J]. Nature Geosciences, 2010, 3(8):567-571.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[3] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[4] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[5] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[6] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[7] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[8] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[9] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[10] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[11] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[12] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[13] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[14] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要