地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1084 -1092. doi: 10.11867/j.issn.1001-8166.2017.10.1084

上一篇    下一篇

北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战
聂红涛 1( ), 王蕊 1, 赵伟 1, 罗晓凡 1, 祁第 2, 鹿有余 3, 张远辉 2, 魏皓 1, *( )   
  1. 1.天津大学海洋科学与技术学院,天津 300072
    2.国家海洋局第三海洋研究所,福建 厦门 361005
    3.Bedford Institute of Oceans, Department of Fisheries and Oceans, Dartmouth, NS, B2Y 4A2, Canada
  • 收稿日期:2017-05-04 修回日期:2017-07-24 出版日期:2017-12-20
  • 通讯作者: 魏皓 E-mail:htnie@tju.edu.cn;weihao@ouc.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“楚科奇海及其邻近海域碳循环年际变化和机制研究”(编号:41630969);国家自然科学基金面上项目“黄东海碳通量季节、年际变化的模拟与机制分析”(编号:41376112)资助.

Key Scientific Problems and Challenges of Studying Carbon Cycle Mechanism in Pacific Sector of the Arctic

Hongtao Nie 1( ), Rui Wang 1, Wei Zhao 1, Xiaofan Luo 1, Di Qi 2, Youyu Lu 3, Yuanhui Zhang 2, Hao Wei 1, *( )   

  1. 1.School of Marine Science and Technology, Tianjin University, Tianjin 300072,China
    2.Third Institute of Oceanography,SOA,Xiamen 361005,China
    3.Bedford Institute of Oceans, Department of Fisheries and Oceans, Dartmouth, NS, B2Y 4A2, Canada
  • Received:2017-05-04 Revised:2017-07-24 Online:2017-12-20 Published:2017-10-20
  • Contact: Hao Wei E-mail:htnie@tju.edu.cn;weihao@ouc.edu.cn
  • About author:

    First author:Nie Hongtao(1979-),male,Suizhou City,Hubei Province, Lecturer. Research areas include shallow sea dynamics and marine ecosystem dynamics.E-mail:htnie@tju.edu.cn

  • Supported by:
    *Project supported by the National Natural Science Foundation of China“Research on characteristics and mechanisms of inter-annual variations of carbon cycling in the Chukchi Sea and adjacent region”(No.41630969) and “Modeling and analysis of seasonal and inter-annual variability of carbon fluxes in the Yellow and East China Seas”(No.41376112).

目前全球节能减排任务艰巨,海冰消退后北冰洋碳汇能力增加被期待。楚科奇海及其临近海域拥有全球海洋较高的生物固碳率和深海埋存量,在整个北冰洋碳循环中举足轻重。厘清楚科奇海碳循环过程对环境快速变化的响应机制是北冰洋碳汇能力预测的基础。然而,楚科齐海碳吸收、封存对气候变化的响应尚存争议,碳循环过程的主控因子尚不明确。建立高分辨率的海洋—海冰—碳循环模型,可以探究海冰消退对楚科奇海海—气界面CO2吸收通量和垂直碳沉降通量的影响,认识入流与陆坡涌升增加对楚科奇海CO2源/汇格局的作用,探讨碳的深海输运埋藏对环境变化的响应,评估楚科奇海陆架泵效率及其在全球碳汇中的作用。基于气候环境快速变化下楚科奇海域碳循环研究所面临的挑战,提出了构建北冰洋碳循环模型的基本思路及拟解决的关键科学问题。

Challenged by the enormous pressure to reduce the global carbon emission, it is expected that the Arctic Ocean could absorb additional atmospheric CO2 with the retreating of sea-ice. The Chukchi Sea and adjacent waters, characterized by the highest carbon fixation in the global ocean and large carbon flux into the deep-ocean for sequestration, make substantial contributions to carbon cycling in the entire Arctic Ocean. Understanding the response mechanism of carbon cycling in this region to the rapidly changing environment is the foundation for the prediction of carbon sink in the Arctic Ocean. However, the response of carbon absorption and storage to climate change is still controversial, and the main controlling factors of the carbon cycle process remain unclear.Thus, to establish high-resolution coupled ocean-ice-carbon models can explore the influence of sea ice retreat on atmospheric CO2 and the vertical sinking carbon fluxes in Chukchi Sea, estimate the effectiveness of growing inflow and slope upwelling on carbon sink/source patterns, discuss the response of deep-ocean carbon sequestration to the changing environment, and evaluate the effectiveness of continental shelf pump in the Chukchi Sea as well as its role in the global carbon sink. Based on the challenge for the research of the Chukchi Sea carbon cycle research with rapidly changing climate, the basic ideas of establishing Arctic Ocean carbon cycling model as well as its key scientific issues to be resolved were proposed.

中图分类号: 

图1 北冰洋年最小海冰覆盖面积变化 [ 6 ]
Fig.1 Changes in the minimum coverage of Arctic sea ice [ 6 ]
图2 北冰洋太平洋扇区地形(色标,白色为200 m等深线)、环流(箭头)、海冰覆盖范围(虚线,绿色为9 月海冰最大、最小覆盖边缘,黄色为3月海冰最大/最小覆盖边缘)示意图 [ 8 ]
Fig.2 Chukchi sea and adjacent oceans terrain (white is 200 m isobath), circulation (arrow), sea ice coverage (dotted line, green(yellow) is the maximum and minimum of sea ice cover edge in September (March)) [ 8 ]
图3 北极碳循环概念图 [ 32 ]
Fig.3 A conceptual view of the Arctic Ocean carbon cycle [ 32 ]
图4 海洋—海冰—生物地球化学碳循环概念模型
Fig.4 Carbon cycle concept model of sea-ice-biogeochemical process
[1] USNOAA/ESRL. Trends in Atmospheric Carbon Dioxide[EB/OL].2014[2017-04-20].http:∥www.esrl.noaa.gov/gmd/ccgg/trends/.
[2] Doney S C, Ruckelshaus M, Duffy J E, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4(1):11-37.
[3] Qi Di, Chen Liqi.Review on researches of aragonite saturation state in the Arctic Ocean: A key parameter of Arctic Ocean acidification[J].Advances in Earth Science, 2014, 29(5): 569-576.
[祁第,陈立奇.北冰洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2014, 29(5):569-576.]
[4] Bates N R, Mathis J T.The Arctic ocean marine carbon cycle evaluating of air-sea CO2 exchange, ocean acidification impacts and potential feedbacks[J]. Biogeosicence, 2009,6(11): 2 433-2 459.
[5] Duarte C M, Lenton T, Wadhams P, et al. Abrupt climate change in the Arctic[J]. Nature Climate Change, 2012, 2(2):60-62.
[6] Post E, Bhatt U S, Bitz C M, et al. Ecological consequences of sea-ice decline[J]. Science, 2013, 341(6 145): 519-524.
[7] Anderson L G, Kaltin S.Carbon fluxes in the Arctic Ocean—Potential impact by climate change[J].Polar Research, 2001, 20(2):225-232.
[8] Grebmeier J M, Maslowski W.The Pacific Arctic Region: Ecosystem Status and Trends in A Rapidly Changing Environment[M]. Netherlands: Springer, 2014:66-207.
[9] Bates N R.Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean[J]. Journal of Geophysical Research Oceans, 2006, 111(C10):C10013.
[10] Macgilchrist G A, Garabato A C, Tsubouchi T, et al.The Arctic Ocean carbon sink[J]. Deep Sea Research Part I:Oceanographic Research Papers,2014, 86(1):39-55.
[11] Anderson L G, Tanhua T, Björk G, et al. Arctic ocean shelf-basin interaction: An active continental shelf CO2 pump and its impact on the degree of calcium carbonate solubility[J].Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(7): 869-879.
[12] Grebmeier J M, Overland J E, Moore S E, et al. A major ecosystem shift in the northern Bering Sea[J].Science, 2006, 311(5 766):1 461.
[13] Zhuang Y, Jin H, Li H, et al. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129:23-32.
[14] Wassmann P.Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean[J].Progress in Oceanography, 2015, 139:1-12.
[15] Lowry K E, Pickart R S, Mills M M, et al.The influence of winter water on phytoplankton blooms in the Chukchi Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015,118:53-72.
[16] Wood K R, Bond N A, Danielson S L, et al. A decade of environmental change in the Pacific Arctic region[J]. Progress in Oceanography, 2015,136:12-31.
[17] Mathis J T, Pickart R S, Byrne R H, et al. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states[J].Geophysical Research Letters, 2012, 39(7):127-137.
[18] Kwok R, Rothrock D A.Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008[J]. Geophysical Research Letters, 2009, 36(15): L15501,doi:10.1029/2009GL039035.
[19] Tank S E, Raymond P A, Striegl R G, ,et al. A land-to-ocean perspective on the magnitude. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean[J].Global Biogeochemical Cycles, 2012, 26(26):GB4018,doi:10.1029/2011GB004192.
[20] Woodgate R, Weingartner T J, Lindsay R.Observed increase in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean Water Column[J]. Geophysical Research Letters, 2012, 39(39),doi:10.1029/2012GL054092.
[21] Peralta-Ferriz C, Woodgate R A.Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling[J]. Progress in Oceanography, 2015, 134: 19-53.
[22] Cai W J, Chen L Q, Chen B S, et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin[J]. Science, 2010, 329(5 991):556-559.
[23] Evans W, Mathis J T, Cross J N, et al. Sea-air CO2 exchange in the western Arctic coastal ocean[J].Global Biogeochemical Cycle, 2015, 29(8):1 190-1 209.
[24] Gao Z, Chen L, Sun H, ,et al. Distributions. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean[J]. Deep Sea Reasearch Part II:Topical Studies in Oceanography, 2012, 81/84(1):46-52.
[25] Anderson L G, Olsson K, Chierici M.A carbon budget for the Arctic Ocean[J]. Global Biogeochemical Cycle, 1998, 12(3): 455-465.
[26] Cai W J, Dai M H, Wang Y C.Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J].Geophysical Research Letters, 2006, 33(12),doi: 10.1029/2006GL026219.
[27] Arrigo K R, Dijken G L V. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 2015, 136:60-70.
[28] Serreze M C, Crawford A D, Stroeve J C.Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea[J]. Journal of Geophysical Research Oceans, 2016, 121(10): 7 308-7 325.
[29] Zhang J L, Ashjian C, Campbell R, et al. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2015, 67(1):122-135.
[30] Qi D, Chen L, Chen B, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017,7(3):195-199.
[31] Cooper L W,Whitledge T E,Grebmeier J M,et al.The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait[J].Journal of Geophysical Research Atmospheres,1997,102(C6):12 563-12 573.
[32] Richard G J B. Oceanography: Ocean acidification without borders[J]. Nature Climate Change, 2017,7: 241-242.
[33] Arrigo K R.Impacts of climate on ecosystems and chemistry of the Arctic Pacific environment[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015,118:1-6.
[34] IASC: 25 Years of International Arctic Research Cooperation[EB/OL].2016[2017-04-20].https:∥www.joomag.com/magazine/iasc-25-years/0102946001421148178?short.
[35] Crane K, Ostrovskiy A.Introduction to the special issue: Russian-American Long-term Census of the Arctic (RUSALCA)[J]. Oceanography, 2015,28(3):18-23.
[36] Grebmeier J M, Harvey H R, Stockwell D A.The western Arctic Shelf-Basin Interactions (SBI) project, volume II: An overview[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(17):1 137-1 143.
[37] NSTC:Science for An Ocean Nation: Update of the Ocean Research Priorities Plan[EB/OL].2013[2017-04-20].https:∥permanent.access.gpo.gov/gpo35019/ocean_research_plan_2013.pdf.
[38] C3O: A Canadian Contribution to the International Polar Year[EB/OL].2010[2017-04-20].http:∥pices.int/publications/pices_press/volume16/v16_n2/pp_22-25_Arctic_f.pdf.
[39] Parkinson A J.The international polar year, 2007-2008, an opportunity to focus on infectious diseases in Arctic regions[J]. Emerging Infectious Diseases, 2008, 14(1):1.
[40] Goessling H F, Jung T, Klebe S, ,et al.Paving the way for the year of polar prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(4): ES85-ES88.
[41] Chen Liqi, Zhao Jinping, Bian Lingen, et al. Study on key processes affecting rapid changes in the arctic[J]. Journal of Polar Research, 2003, 15(4): 283-302.
[陈立奇, 赵进平, 卞林根, 等. 影响北极地区迅速变化的一些关键过程研究[J]. 极地研究, 2003, 15(4): 283-302.]
[42] Zhang Zhanhai, Zhao Jinping, Bian Lin’gen.Rapidly Changing Arctic Ocean Environment[M]. Beijing: Science Press, 2011.
[张占海,赵进平,卞林根,等. 快速变化中的北极海洋环境[M]. 北京: 科学出版社, 2011.]
[43] Chen Liqi, Gao Zhongyong, Zhan Liyang, et al. Rapid change in arctic and antarctic oceans and theirfeedbacks to global climate change[J]. Journal of Applied Oceanography, 2013, 32(1):138-144.
[陈立奇, 高众勇, 詹力扬, 等. 极区海洋对全球气候变化的快速响应和反馈作用[J].应用海洋学报,2013, 32(1):138-144.]
[44] Zhao Jinping.The birth and reflections of China’s strategy for Arctic science and technology[J].Journal of Ocean University of China (Social Sciences Edition), 2014,(3):1-7.
[赵进平. 我国北极科技战略的孕育和思考[J].中国海洋大学学报:社会科学版, 2014,(3):1-7.]
[45] Brown Z W, Lowry K E, Palmer M A, et al. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 118:88-104.
[46] Notz D, Stroeve J.Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission[J]. Science, 2016, 354(6 313):747.
[47] Proshutinsky A, Aksenov Y, Kinney J C, et al. Recent advancesin Arctic ocean studies employing models from the Arctic Ocean model intercomparison project[J]. Oceanography, 2011,24(3):102-113.
[48] Proshutinsky A, Steele M, Timmermans M.Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities[J]. Journal of Geophysical Research Oceans, 2016, 121(6): 3 803-3 819.
[49] Lu Y, Higginson S, Nudds S, et al. Volume fluxes though the Canadian Arctic Archipelago and Davis Strait: Linking monthly variations to forcing in different seasons[J]. Journal of Geophysical Research Oceans, 2014, 119(3):1 927-1 942.
[50] Dupont F, Higginson S, Bourdallé-Badie R, et al. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans[J]. Geoscientific Model Development, 2015, 8(1):1-52.
[51] Roy F, Chevallier M, Smith G C, et al. Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere-ice-ocean surface layer[J]. Journal of Geophysical Research Oceans, 2015,120(6): 4 392-4 417.
[52] Paquin J P, Lu Y Y, Higginson S, et al. Modelled variations of deep convection in the Irminger Sea during 2003-2010[J]. Journal of Physical Oceanography, 2016, 46(6): 179-196.
[53] Manizza M, Follows M J, Dutkiewicz S, et al. Changes in the Arctic Ocean CO2 sink(1996-2007): A regional model analysis[J]. Global Biogeochemical Cycle, 2013, 27(4):1 108-1 118.
[54] Manizza M, Follows M J, Dutkiewicz S, et al. A model of the Arctic Ocean carbon cycle[J]. Journal of Geophysical Research Oceans, 2011, 116(C12):210-222.
[55] Shuert P G, Walsh J J.A coupled physical-biological model of the Bering-Chukchi seas[J].Continental Shelf Research, 1993,13(5/6): 543-573.
[56] Walsh J J, Dieterle D, Maslowski W, et al. A numerical model of seasonal primary production within the Chukchi/Beaufort Seas[J].Deep Sea Research II:Topical Studies in Oceanography,2005, 52(24/26): 3 541-3 576.
[57] Popova E E, Yool A, Coward A C, et al. Control of primary production in the Arctic by nutrients and light: Insights from a high resolution ocean general circulation model[J]. Biogeosciences, 2010,7(11): 3 569-3 591.
[58] Zhang J L, Spitz Y H, Steele M, et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem[J]. Journal of Geophysical Research Oceans, 2010, 115(C10),doi: 10.1029/2009JC005387.
[59] Slagstad D, Ellingsen I H, Wassmann P.Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: An experimental simulation approach[J]. Progress in Oceanography, 2011, 90(1/4):117-131.
[60] Jin M B, Deal C, Lee S H, ,et al. Investigation of Arctic sea ice. Investigation of Arctic sea ice and ocean primary production for the period1992-2007 using a 3-D global ice-ocean ecosystem model[J]. Deep Sea Research II:Topical Studies in Oceanography, 2012, 81/84(1):28-35.
[61] Ji R B, Jin M, Varpe O, et al. Sea ice phenology and timing of primary production pulses in the Arctic Ocean[J]. Global Change Biology, 2013,19(3):734-741.
[62] Wåhlstöm I, Omstedt A, Bjork G, et al. Modelling the CO2 dynamics in the Laptev Sea, Arctic Ocean: Part I[J]. Journal of Marine System, 2012, 102(10):29-38.
[63] Zhao Jinping,Shi Jiuxin,Wang Zhaomin,et al.Arctic amplification produced by sea ice retreat and its global climate effects[J].Advances in Earth Science,2015,30(9):985-995.
[赵进平,史久新,王召民,等.北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展,2015,30(9):985-995.]
[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[3] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[4] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[5] 劳齐斌, 矫立萍, 陈法锦, 陈立奇. 北极区域传统和新型POPs研究进展[J]. 地球科学进展, 2017, 32(2): 128-138.
[6] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[7] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[8] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[9] 王丹,刘桂梅,何恩业,李 津. 有害藻华的预测技术和防灾减灾对策研究进展[J]. 地球科学进展, 2013, 28(2): 233-242.
[10] 宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J]. 地球科学进展, 2012, 27(5): 539-548.
[11] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[12] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[13] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[14] 吴婷婷,李三忠,庞洁红,王健,戴黎明,IODP Expedition 324 Scientific Party. IODP 324航次FMS成像测井资料处理及其在Shatsky海隆构造研究中的应用[J]. 地球科学进展, 2010, 25(7): 753-765.
阅读次数
全文


摘要