Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (9): 1015-1024    DOI: 10.11867/j.issn.1001-8166.2013.09.1015
研究论文     
南大洋二甲基硫海—气交换过程研究进展
张麋鸣1,2,陈立奇2*,汪建君2
1.厦门大学海洋与地球学院,福建 厦门 361005;2. 国家海洋局海洋—大气化学全球变化重点实验室,福建 厦门 361005
Advances in Studying the Sea-Air Dimethysulphide Exchange Process in the Southern Ocean
Zhang Miming1,2, Chen Liqi2, Wang Jianjun2
1.Ocean and Earth Science College of Xiamen University, Xiamen 361005,China;
2.Key Laboratory of Global Change and Marine Atmospheric Chemistry,  State Oceanic Administation, Third Institute of Oceanography, Xiamen 361005,China
 全文: PDF(3239 KB)   HTML
摘要:

二甲基硫(DMS)是一种重要的海洋生源硫化物,通过海—气交换进入大气后生成生物源硫酸盐气溶胶从而对气候产生影响。海洋是大气DMS的主要源地,海洋大气中约90%的DMS来自海洋。南大洋占世界大洋面积的20%,是全球DMS重要的源之一。相较其他海域,南大洋表层海水DMS存在显著的时空变化。由于南大洋复杂的水文环境、多变的海冰情况和受多种生物活动作用的影响,完全了解这一区域DMS海—气交换过程及其控制因素变得更加复杂、困难。此外,开展DMS的冰—气交换过程及其控制因素的研究也很有意义。为了便于今后在极区开展DMS海—气交换过程的研究,深入探究极区DMS的生物地球化学过程。因此,对南大洋DMS海—气通量的估算方法进行讨论,分析南大洋表层海水DMS的分布特征及南大洋DMS海—气输送通量,对南大洋DMS海—气交换过程的控制因素进行探讨。

关键词: 二甲基硫海—气交换通量控制因子南大洋    
Abstract:

Dimethylsulphide (DMS) is an important marine biogenic gas and can be released into atmosphere through seaair gas exchange. The oxidants of DMS in atmosphere are the main compounds of pristine marine sulphate aerosols and would affect the global climate change finally. Almost all the atmospheric DMS, about 90%, comes from the ocean. The southern ocean, which consists about 20% of the whole ocean area, is one of the largest atmospheric DMS sources. In contrast  with the other oceans, the Southern Ocean appears great spatial and temporal variability of surface seawater DMS. In addition, there are the complex hydrography system, variable sea ice condition and various biologic activities in the Southern Ocean as to make survey and understand DMS as well as its controlling factors most difficult. Moreover, it is significant to integrate the DMS seaice exchange processes and its controlling factors studies. In order to develop survey and research on the seaair DMS exchange and biogeochemistry processes, estimate methods of the seaair DMS fluxes will be reviewed, characteristics of the spatial and temporal distribution of surface seawater DMS will be discussed and the seaair DMS flux in the Southern Ocean will be assessed. Finally, major controlling factors of DMS seaair DMS processes will also be analyzed.

Key words: DMS    Sea-air flux    Controlling factors    The Southern Ocean
收稿日期: 2013-07-05 出版日期: 2013-09-10
:  P734  
基金资助:

南北极环境综合考察与评估专项项目“十二五”极地专项项目——专题4“南极周边海域海洋化学与碳通量考察”(编号:CHINAER 2012-01-04);国家自然科学基金重点项目“南大洋N2O源汇格局:驱动机制及其对海洋N2O收支的影响”(编号:41230529)资助.

通讯作者: 陈立奇(1945-),男,福建晋江人,研究员,主要从事海洋大气化学、全球变化科学、极区环境科学等研究.E-mail:lqchen@soa.gov.cn     E-mail: lqchen@soa.gov.cn
作者简介: 张麋鸣(1989-),男,福建三明人,博士研究生,主要从事极地区域硫循环研究.E-mail:zhangmiming2010@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈立奇
张麋鸣
汪建君

引用本文:

张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.

Zhang Miming, Chen Liqi, Wang Jianjun. Advances in Studying the Sea-Air Dimethysulphide Exchange Process in the Southern Ocean. Advances in Earth Science, 2013, 28(9): 1015-1024.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.09.1015        http://www.adearth.ac.cn/CN/Y2013/V28/I9/1015

[1]Vogt M, Liss P. Dimethylsulfide and climate[J]. Geophysical Monograph Series, 2009, 187: 197-232.

[2]Charlson R J, Lovelockl J E, Andreaei M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud[J]. Nature, 1987, 326: 655-661.

[3]Lana A, Bell T, Simó R, et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean[J]. Global Biogeochemical Cycles, 2011, 25(1): GB1004.

[4]Curran M A J , Jones G B. Dimethyl sulfide in the Southern Ocean: Seasonality and flux[J]. Journal of Geophysical Research, 2000, 105(D16): 20 451-20 459.

[5]Kloster S, Feichter J, Maier-Reimer E, et al. DMS cycle in the marine ocean-atmosphere system—A global model study[J]. Biogeosciences, 2006, 3(1): 29-51.

[6]Jones G , Gabric A. Sulphur aerosols released from melting sea ice may influence Antarctic climate[J]. Australian Antarctic Magazine, 2006,(10): 28-29.

[7]Gabric A J, Shephard J M, Knight J M, et al. Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: Evidence for the influence of sea ice[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4018.

[8]Vallina S M, Simó R, Gassó S. What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall[J]. Global Biogeochemical Cycles, 2006, 20(1): GB1014.

[9]Xiao Cunde. Change in Antarctic climate system: Past, present and future[J].Advances in Climate Change Research, 2008, 4(1):1-7.[效存德. 南极地区气候系统变化: 过去, 现在和将来[J]. 气候变化研究进展, 2008, 4(1): 1-7.]

[10]Chen Liqi. Evidence of Arctic and Antarctic changes and their regulation of global climate change(Further findings since the fourth IPCC assessment report released)[J]. Chinese Journal of Polar Research, 2013,25(1):1-6.[陈立奇. 南极和北极地区变化对全球气候变化的指示和调控作用——第四次IPCC评估报告以来一些新认知[J]. 极地研究, 2013, 25(1): 1-6.]

[11]Cameron-Smith P, Elliott S, Maltrud M, et al. Changes in dimethyl sulfide oceanic distribution due to climate change[J]. Geophysical Research Letters, 2011, 38(7): L07704.

[12]Chen L, Wang J, Gao Y, et al. Latitudinal distributions of atmospheric MSA and MSA/nss-SO2-4 ratios in summer over the high latitude regions of the Southern and Northern Hemispheres[J].Journal of Geophysical Research, 2012, 117(D10): D10306.

[13]Marandino C, De Bruyn W, Miller S, et al. Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean[J]. Journal of Geophysical Research, 2007, 112: D03301.

[14]Liss P, Slater P. Flux of gases across the air-sea interface[J]. Nature, 1974, 247:181-184.

[15]Watson A J, Upstill-Goddard R C, Liss P S. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique[J]. Nature, 1991, 349(10): 145-147.

[16]Saltzman E S, King D B, Holmen K, et al. Experimental determination of the diffusion coefficient of dimethylsulfide in water[J]. Journal of Geophysical Research, 1993, 98(C9): 16 481-16 486.

[17]Liss P S, Merlivat L. Air-sea gas exchange rates: Introduction and synthesis[J]. The Role of Air-Sea Exchange in Geochemical Cycling, 1986, 185: 113-127.

[18]Ho D T, Law C S, Smith M J, et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations[J]. Geophysical Research Letters, 2006, 33(16): L16611.

[19]Wanninkhof R. Relationship between wind speed and gas exchange[J]. Journal of Geophysical Research, 1992, 97(25): 7 373-7 382.

[20]Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical  Cycles, 2000, 14(1): 373-387.

[21]Zindler C, Peeken I, Marandino C, et al. Environmental control on the variability of DMS and DMSP in the Mauritanian upwelling region[J]. Biogeosciences, 2012, 9(3): 1 041-1 051.

[22]Tortell P D. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry[J]. Limnology and Oceanography: Methods, 2005, 3: 24-37.

[23]Tortell P D, Long M C, Payne C D, et al. Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica[J]. Deep Sea Research Part II, 2012, 71/76: 77-93.

[24]Simo R, Dachs J. Global ocean emission of dimethylsulfide predicted from biogeophysical data[J]. Global Biogeochemical Cycles, 2002, 16(4): 1 018.

[25]Gao Zhongyong, Chen Liqi. Study of carbon cycling in the Southern Ocean: A review[J]. World Science-Technology Research and Development, 2002,24(4):41-48.[高众勇, 陈立奇. 南大洋碳循环研究进展[J]. 世界科技研究与发展, 2002, 24(4): 41-48.]

[26]Tortell P D, Long M C. Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom[J]. Geophysical Research Letters, 2009, 36(1): L01603.

[27]Jones G, Fortescue D, King S, et al. Dimethylsulphide and dimethylsulphoniopropionate in the South-West Indian Ocean sector of East Antarctica from 30° to 80°E during BROKE-West[J]. Deep Sea Research Part II, 2010, 57(9/10): 863-876.

[28]Turner S, Nightingale P, Broadgate W, et al. The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice[J]. Deep Sea Research Part II, 1995, 42(4): 1 059-1 080.

[29]Staubes R, Georgii H W. Biogenic sulfur compounds in seawater and the atmosphere of the Antarctic region[J]. Tellus B, 1993, 45(2): 127-137.

[30]Asher E C, Merzouk A, Tortell P D. Fine-scale spatial and temporal variability of surface water dimethylsufide (DMS) concentrations and sea-air fluxes in the NE Subarctic Pacific[J]. Marine Chemistry, 2011, 126(1): 63-75.

[31]Kiene R P, Kieber D J, Slezak D, et al. Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand[J]. Aquatic Sciences-Research Across Boundaries, 2007, 69(3): 305-319.

[32]Tortell P, Gueguen C, Long M, et al. Spatial variability and temporal dynamics of surface water pCO2,△O2/Ar and dimethylsulfide in the Ross Sea, Antarctica[J]. Deep Sea Research Part I, 2011, 58: 241-259.

[33]Curran M A J, Jones G B. Dimethyl sulfide in the Southern Ocean: Seasonality and fiux[J].Journal of Geophysical Research,2000, 105(D16): 20 451-20 459.

[34]Nomura D, Koga S, Kasamatsu N, et al. Direct measurements of DMS flux from Antarctic fast sea ice to the atmosphere by a chamber technique[J]. Journal of Geophysical Research, 2012, 117(C4): C04011.

[35]Trevena A, Jones G. DMS flux over the Antarctic Sea Ice Zone[J].Marine Chemistry, 2012,134/135: 47-58.

[36]Stefels J, Steinke M, Turner S, et al. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling[J]. Biogeochemistry, 2007, 83(1): 245-275.

[37]Sunda W, Kieber D, Kiene R, et al. An antioxidant function for DMSP and DMS in marine algae[J]. Nature, 2002, 418(18): 317-320.

[38]Simó R. From cells to globe: Approaching the dynamics of DMS(P) in the ocean at multiple scales[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(5): 673-684.

[39]Del Valle D A, Kieber D J, Toole D A, et al. Biological consumption of dimethylsulfide (DMS) and its importance in DMS dynamics in the Ross Sea, Antarctica[J]. Limnology and Oceanography, 2009, 54(3): 785-798.

[40]Zubkov M V, Fuchs B M, Archer S D, et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea[J]. Deep Sea Research Part II, 2002, 49(15): 3 017-3 038.

[41]Toole D A, Kieber D J, Kiene R P, et al. High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters[J]. Geophysical Research Letters, 2004, 31(11): L11307.

[42]Toole D A, Slezak D, Kiene R P, et al. Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean[J]. Deep Sea Research Part I, 2006, 53(1): 136-153.

[43]Trevena A J, Jones G B. Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting[J]. Marine Chemistry, 2006, 98(2): 210-222.

[44]Loose B, Miller L A, Elliott S, et al. Sea ice biogeochemistry and material transport across the frozen interface[J]. Oceanography, 2011, 24(3): 202-218.

[45]Tison J L, Brabant F, Dumont I, et al. High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[J].Journal of Geophysical Research, 2010,115(G4):G04044.

[46]Nomura D, Kasamatsu N, Tateyama K, et al. DMSP and DMS in coastal fast ice and under-ice water of Lützow-Holm Bay, eastern Antarctica[J]. Continental Shelf Research, 2011, 31(13): 1 377-1 383.

[47]Zemmelink H J, Dacey J W H, Houghton L, et al. Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea[J]. Geophysical Research Letters, 2008, 35(6): L06603.

[1] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[2] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[3] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[4] 张介霞, 詹力扬, 陈立奇. 南大洋N2O研究进展及测量新技术展望*[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[5] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[6] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[7] 周琴;赵进平;何宜军. 南极绕极波研究综述[J]. 地球科学进展, 2004, 19(5): 761-766.
[8] 张武昌,孙松. 铁假说和HNLC海区的现场铁加富实验[J]. 地球科学进展, 2002, 17(4): 613-616.