地球科学进展 ›› 2013, Vol. 28 ›› Issue (11): 1201 -1208.

上一篇    下一篇

南大洋N 2O研究进展及测量新技术展望 *
张介霞 1, 2( ), 詹力扬 2, 陈立奇 2, *( )   
  1. 1. 厦门大学海洋与地球学院,福建厦门 361005
    2. 国家海洋局海洋—大气化学与全球变化重点实验室,国家海洋局第三海洋研究所, 福建厦门 361005
  • 收稿日期:2013-05-13 修回日期:2013-09-16 出版日期:2013-11-10
  • 通讯作者: 陈立奇 E-mail:zhangjiexia1986@sina.com;lqchen@soa.gov.cn
  • 基金资助:
    [HT6SS][ZK(]中国极地科学战略青年基金项目“普里兹湾N 2O分布特征及可能形成机制”(编号:20120310)资助.

Review on researchesof nitrous oxide inthe Southern Oceanand relative new technologies

Jiexia Zhang 1, 2( ), Liyang Zhan 2, Liqi Chen 2, *( )   

  1. 1.Ocean and Earth Science College of Xiamen University, Xiamen 361005,China
    2.Key Laboratory of Global Change and MarineAtmospheric Chemistry of State Oceanic Administration (SOA),Third Institute of Oceanography, SOA, Xiamen 361005,China
  • Received:2013-05-13 Revised:2013-09-16 Online:2013-11-10 Published:2013-11-10
  • Contact: Liqi Chen E-mail:zhangjiexia1986@sina.com;lqchen@soa.gov.cn

氧化亚氮(N2O)是大气最重要的温室气体之一,能在大气滞留120年,其增温潜势是CO2的310倍。工业革命以来,大气中N2O浓度已增加了20%,但海洋仍然是大气N2O重要的自然源,占总自然源的1/3左右。南大洋是全球海洋系统重要组成部分,具有独特的水文特征。模式研究表明其是大气N2O的重要源。然而,受制于恶劣的海况条件,南大洋航次观测数据至今十分稀少。简单综述了南大洋N2O研究的重要性、研究进展及现场观测技术和模型应用的结果及其存在的问题。强调稳定同位素方法的运用将为海洋N2O形成机制研究提供新的强有力手段,另外,研发高精度的走航观测技术也是今后N2O研究取得突破的必须努力方向。展望激光光谱技术的运用对南大洋N2O研究的突破以及海冰中N2O浓度测量技术的发展,将对评估海冰在形成和融化过程中可能存在的源汇提供直测证据。

Nitrous oxide is an important greenhouse gas,which has a long lifetime of about 120 years and has a 310 times greenhouse effect than CO2. Since the industrial revolution, the atmospheric N2O concentration has increased significantly by 20%. Ocean is a net source, about 1/3 of total oceanic souce. Southern Ocean is an important part of the global ocean system, has a unique hydrological characteristics. So far it is regarded as a significant natural source to the global N2O flux according to the model studies. However,the field work is very limit, due to the fierce in situ conditions. The importance of N2O reseaches of Southern Ocean, progresses of nitrous oxide researches, especially new technologies applied to underway N2O measurements in the Southern Ocean are reviewed. The advance of field, model studies and their problems or uncertainties that need to be resolved are also discussed. The using of stable isotope methods will provide powerful tools for marine N2O mechanism. Development of highprecision monitoring technology is generally the driving force of future research. Developing techniques of laser spectroscopy in marine N2O studies and measurment of N2O in sea ice will provide powerful tools to differeciate the N2O source sink characteristic, constrain their budget and formation mechanism in region such as Southern Ocean.

[1] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[J]. Climate Change, 2007, 20: 129-234.
[2] Portmann R, Daniel J, Ravishankara A. Stratospheric ozone depletion due to nitrous oxide: Influences of other gases[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1 593): 1 256-1 264.
[3] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5 949): 123-125.
[4] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5 878): 889-892.
[5] Freing A. Production and Emissions of Oceanic Nitrous Oxide[D]. Germay: Christian-Albrechts-Universität, 2009.
[6] Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry[M]∥Solomon S, Qir D, Manning M, et al. Climate Change 2007:The Physical Science Basis. Cambridge: Cambridge University Press, 2007: 541-584.
[7] Nevison C D, Lueker T J, Weiss R F. Quantifying the nitrous oxide source from coastal upwelling[J]. Global Biogeochemical Cycles, 2004, 18(1), doi: 10.1029/2003gb002110.
[8] Codispoti L A. Interesting times for marine N2O[J]. Science, 2010, 327(5971): 1339-1340.
[9] Naqvi S W A, Bange H W, Farías L, et al. Marine hypoxia/anoxia as a source of CH4 and N2O[J]. Biogeosciences, 2010, 7(7): 2 159-2 190.
[10] Pierotti D, Rasmussen R A. Nitrous oxide measurements in the eastern tropical Pacific Ocean[J]. Tellus, 1980, 32: 56-72.
[11] Naqvi S W A, Noronha R J. Nitrous oxide in the Arabian Sea[J]. Deep Sea Research Part I, 1991, 38(7): 871-890.
[12] Nevison C, Butler J H, Elkins J. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean[J]. Global Biogeochemical Cycles, 2003, 17(4), doi: 10.1029/2003GB002068.
[13] Walter S, Bange H W, Breitenbach U, et al. Nitrous oxide in the North Atlantic Ocean[J]. Biogeosciences, 2006, 3(4): 607-619.
[14] Poth M, Focht D D. 15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5): 1 134-1 141.
[15] Lam P, Kuypers M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
[16] Löscher C R, Kock A, Knneke M, et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea[J]. Biogeosciences, 2012, 9(7): 2 419-2 429.
[17] Santoro A E, Buchwald C, McIlvin M R, et al. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea[J]. Science, 2011, 333(6 047): 1 282-1 285.
[18] Cohen Y, Gordon L I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: Evidence for its consumption during denitrification and possible mechanisms for its production[J]. Deep Sea Research, 1978, 25(6): 509-524.
[19] Elkins J W, Wofsy S C, McElroy M B, et al. Aquatic sources and sinks for nitrous oxide[J]. Nature, 1978, 275(5 681): 602-606.
[20] Suntharalingam P, Sarmiento J L, Toggweiler J R. Global significance of nitrous-oxide production and transport from oceanic low-oxygen zones: A modeling study[J]. Global Biogeochemical Cycles, 2000, 14(4): 1 353-1 370.
[21] Yoshida N, Hattori A, Saino T, et al.15N/14N ratio of dissolved N2O in the eastern tropical Pacific Ocean[J]. Nature, 1984, 307: 442-444.
[22] Ostrom N E, Russ M E, Popp B, et al. Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen[J]. Chemosphere-Global Change Science, 2000, 2(3): 281-290.
[23] Yoshinari T, Altabet M A, Naqvi S W A, et al. Nitrogen and oxygen isotopic composition of N2O from suboxic waters of the eastern tropical North Pacific and the Arabian Sea—Measurement by continuous-flow isotope-ratio monitoring[J]. Marine Chemistry, 1997, 56(3/4): 253-264.
[24] Naqvi S W A, Yoshinari T, Jayakumar D A, et al. Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea[J]. Nature, 1998, 394: 462-464.
[25] Toyoda S, Yoshida N. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer[J]. Analtical Chemistry, 1999, 71(20): 4 711-4 718.
[26] StrammaL, Johnson G C, Sprintall J, et al. Expanding oxygen-minimum zones in the tropical oceans[J]. Science, 2008, 320(5 876): 655-658.
[27] Beman J M, Chow C E, King A L, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification[J]. Proceedings of the National Academy of Sciences, 2011, 108(1): 208-213.
[28] Bianchi D, Dunne J P, Sarmiento J L, et al. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2[J]. Global Biogeochemical Cycles, 2012, 26(2), doi: 10.1029/2011GB004209.
[29] Gehlen M, Gruber N, Gangstö R, et al. Biogeochemical consequences of ocean acidification and feedbacks to the Earth system[M] Gattuso J P, Hansson L,eds.Ocean Acidification. Oxford: Oxford University Press, 2011: 230-248.
[30] Meredith M P, Schofield O, Newman L, et al. The vision for a southern ocean observing system[J]. Current Opinion in Environmental Sustainability, 2013, 5: 1-8.
[31] Gille S T. Decadal-scale temperature trends in the Southern Hemisphere Ocean[J]. Journal of Climate, 2008, 21(18): 4 749-4 765.
[32] Bning C W, Dispert A, Visbeck M, et al. The response of the Antarctic circumpolar current to recent climate change[J]. Nature Geoscience, 2008, 1(12): 864-869.
[33] Jacobs S S, Jenkins A, Giulivi C F, et al. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf[J]. Nature Geoscience, 2011, 4(8): 519-523.
[34] Pritchard H, Ligtenberg S, Fricker H, et al. Antarctic ice-sheet loss driven by basal melting of ice shelves[J]. Nature, 2012, 484(7395): 502-505.
[35] Turner J, Comiso J C, Marshall G J, et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic Sea ice extent[J]. Geophysical Research Letters, 2009, 36(8), doi: 10.1029/2009GL037524.
[36] Bouwman A F, Van der Hoek K W, Olivier J G J. Uncertainties in the global source distribution of nitrous oxide[J]. Journal of Geophysical Research, 1995, 100(D2): 2785-2800.
[37] Nevison C D, Keeling R F, Weiss R F, et al. Southern ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cape Grim, Tasmania[J]. Tellus Series B: Chemical and Physical Meteorology, 2005, 57(3): 218-229.
[38] Rees A, Owens N, Upstill-Goddard R. Nitrous oxide in the Bellingshausen sea and drake passage[J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 383-3 391.
[39] Chen L, Zhan L, Xu S, et al. Multiple processes affecting surface seawater N2O saturation anomalies in Tropical Oceans and Prydz Bay,Antarctica[J]. Advance in Polar Science, 2012, 23(2): 87-94.
[40] Carter L, McCave I, Williams M J M. Circulation and water masses of the Southern Ocean: A review[J]. Developments in Earth and Environmental Sciences, 2008, 8: 85-114.
[41] Marinov I, Gnanadesikan A, Toggweiler J, et al. The southern ocean biogeochemical divide[J]. Nature, 2006, 441(7 096): 964-967.
[42] Priscu J C, Downes M T, Priscu L R, et al. Dynamics of ammonium oxidizer activity and nitrous oxide(N2O) within and beneath Antarctic sea ice[J]. Marine Ecology Progress Series Oldendorf, 1990, 62(1): 37-46.
[43] Weiss R F, Van Woy F A, Salameh P K, et al. Surface Water and Atmospheric Carbon Dioxide and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions between 1977 and 1990[R]. ORNL/CDIAC-59, Oak Ridge National Laboratory, TN (United States). Carbon Dioxide Information Analysis Center, 1992.
[44] Law C S, Ling R D. Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current[J]. Deep Sea Research Part II, 2001, 48(11): 2 509-2 527.
[45] Walter S, Peeken I, Lochte K, et al. Nitrous oxide measurements during EIFEX, the European iron fertilization experiment in the subpolar South Atlantic Ocean[J]. Geophysical Research Letters, 2005, 32(23): L23613.
[46] Zhan L, Chen L. Distributions of N2O and its air-sea fluxes in seawater along cruise tracks between 30°S-67°S and in Prydz Bay, Antarctica[J]. Journal of Geophysical Research, 2009, 114(C3): 1-14.
[47] Nevison C D, Weiss R F, Erickson Iii D J. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research:Oceans(1978-2012), 1995, 100(C8): 15809-15 820.
[48] Hirsch A, Michalak A, Bruhwiler L, et al. Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001[J]. Global Biogeochemical Cycles, 2006, 20(1): GB1008, doi: 10.1029/2004GB00243.
[49] Huang J, Golombek A, Prinn R, et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method[J]. Journal of Geophysical Reseach, 2008, 113(D17): 148-227.
[50] Zhang Jiexia. The Distribution of N2O along the Cruise Tracks and Prydz Bay during the China 27th Antarctic Expedition[D]. Xiamen: Third Institution of Ocean
[51] Butler J, Elkins J, Brunson C, et al. Trace Gases in and over the West Pacific and East Indian Oceans during the El Nio-Southern Oscillation Event of 1987[R].Washington DC:Superintendent of Documents, U.S.G.P. O, 1988.
[52] Butler J H, Elkins J W. An automated technique for the measurement of dissolved N2O in natural waters[J]. Marine Chemistry, 1991, 34(1): 47-61.
[53] Esler M, Griffith D, Turatti F, et al. N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy[J]. Chemosphere-Global Change Science, 2000, 2(3): 445-454.
[54] Stubbins A, Uher G, Kitidis V, et al. The open-ocean source of atmospheric carbon monoxide[J]. Deep Sea Research Part II, 2006, 53(14): 1 685-1 694.
[55] Arévalo-Martínez D. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: Performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (DNIR)[J]. Ocean Science Discussions, 2013, doi: 10.5194/osd-10-1281-2013.
[56] Kaiser J, Grefe I, Wager N, et al. Continuous Measurements of Nitrous Oxide, Carbon Monoxide, Methane and Carbon Dioxide in the Surface Ocean with Novel Laser-absorption Analysers[C]. EGU General Assembly Conference Abstracts, 2013, 15: 13 401.
[57] Sutka R L, Ostrom N E, Ostrom P H, et al. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances[J]. Applied and Environmental Microbiology, 2006, 72(1): 638-644.
[58] Frame C H, Casciotti K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J]. Biogeosciences, 2010, 7(9): 2 695-2 709.
[59] Goreau T J, Kaplan W A, Wofsy S C, et al. Production of NO-2 and N2O by nitrifying bacteria at reduced concentrations of oxygen[J]. Applied and Environmental Microbiology, 1980, 40(3): 526.
[60] Sutka R L, Ostrom N E, Ostrom P H, et al. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath[J]. Rapid Commun Mass Spectrom, 2003, 17(7): 738-745.
[61] Chisholm S W, Morel F M. What Controls Phytoplankton Production in Nutrient-rich Areas of the Open Sea?[M]. California: American Society of Limnology and Oceanography, 1991: U1 507-U1 511.
[62] Kaiser J. Stable Isotope Investigations of Atmospheric Nitrous Oxide[D]. Mainz: Universitätsbibliothek Mainz, 2002.
[63] Cavalieri D, Parkinson C. Antarctic Sea ice variability and trends, 1979-2006[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113(C7), doi: 10.1029/2007JC004564.
[64] Loose B, McGillis W R, Schlosser P, et al. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments[J]. Geophysical Research Letters, 2009, 36(5), doi: 10.1029/2008GL036318.
[65] Song G, Xie H, Aubry C, et al. Spatiotemporal variations of dissolved organic carbon and carbon monoxide in first-year sea ice in the western Canadian Arctic[J]. Journal of Geophysical Research: Oceans (1978-2012), 2011, 116(C11), doi: 10.1029/2010JC006867.
[66] Rysgaard S, Glud R N, Sejr M, et al. Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C3), doi: 10.1029/2006JC003572.
[67] Randall K, Scarratt M, Levasseur M, et al. First measurements of nitrous oxide in Arctic Sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C5), doi: 10.1029/2011JC007340.
[68] Delille B, Jourdain B, Borges A V, et al. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice[J]. Limnology and Oceanography, 2007, 52(4): 1367.
[69] Rysgaard S, Bendtsen J, Pedersen L, et al. Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas[J]. Journal of Geophysical Research: Oceans(1978-2012), 2009, 114(C9),doi: 10.1029/2008JC005088.
[70] Craig H, Gordon L I. Nitrous oxide in the ocean and the marine atmosphere[J]. Geochimica et Cosmochimica Acta, 1963, 27(9): 949-955.
[71] Junge C, Hahn J. N2O measurements in the North Atlantic[J]. Journal of Geophysical Research, 1971, 76(33): 8 143-8 146.
[72] Hahn J. Nitrous oxide in the oceans[M]∥Delwich C C,ed. Denitrification, Nitrification and Atmospheric Nitrous oxide. New York: John Wiley & Sons Inc, 1981: 191-277.
[73] Hahn J. The North Atlantic Ocean as a source of atmospheric N2O[J]. Tellus, 1974, 26(1/2): 160-168.
[74] Yoshinari T. Nitrous oxide in the sea[J]. Marine Chemistry, 1976, 4(2): 189-202.
[75] Cicerone R J, Shelter J D, Liu S C. Nitrous oxide in Michigan waters and in US municipal waters[J]. Geophysical Research Letters, 1978, 5: 173-176.
[76] Singh H B, Salas L J, Shigeishi H. The distribution of nitrous oxide/N2O/ in the global atmosphere and the Pacific Ocean[J]. Tellus, 1979, 31(4): 313-320.
[77] Hahn J, Thrush B, Nash T. The cycle of atmospheric nitrous oxide[J]. Philosophical Transactions of the Royal Society of London Series A, 1979, 290(1 376): 495-504.
[78] Cohen Y, Gordon L I. Nitrous oxide production in the ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1979, 84(C1): 347-353.
[79] Naqvi S W A. N2O production in the ocean[J]. Nature, 1991, 349: 373-374.
[80] Naqvi S W A, Jayakumar D A, Nair M, et al. Nitrous oxide in the western Bay of Bengal[J]. Marine Chemistry, 1994, 47(3/4): 269-278.
[81] Lal S, Patra P K. Variabilities in the fluxes and annual emissions of nitrous oxide from the Arabian Sea[J]. Global Biogeochemical Cycles, 1998, 12(2): 321-327.
[82] Patra P K, Lal S, Venkataramani S, et al. Seasonal and spatial variability in N2O distribution in the Arabian Sea[J]. Deep-Sea Research Part I, 1999, 46(3): 529-543.
[83] Kock A, Schafstall J, Dengler M, et al. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean[J]. Biogeosciences, 2012, 9(3): 957-964.
[84] Walter S, Bange H W, Wallace D W R. Nitrous oxide in the surface layer of the tropical North Atlantic Ocean along a west to east transect[J]. Geophysical Research Letters, 2004, 31(23): L23S07, doi: 10.1029/2004GL019937.
[85] Zhang Guiling. Studies on Biogeochemistry of Dissolved Methane and Nitrous Oxide in the Coastal Waters of China[D]. Qingdao: Ocean University of China, 2004.
[张桂玲.中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究 [D]. 青岛:中国海洋大学, 2004.]
[86] Xu Jirong, Wang Youshao, Zhang Fengqin, et al. Studies on formation mechanism and distribution of nitrous oxide in northeastern South China Sea[J]. Journal of Tropical Oceanography, 2006, 25(4): 66-74.
[徐继荣, 王友绍, 张凤琴, 等. 南海东北部海水中N2O分布与产生机制的初步研究[J]. 热带海洋学报, 2006, 25(4): 66-74.]
[87] Zhang G L, Zhang J, Liu S M, et al. Nitrous oxide in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes[J]. Biogeosciences, 2010, 7(1): 3 505-3 516.
[88] Zhang G, Zhang J, Xu J, et al. Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay[J]. Estuarine, Coastal and Shelf Science, 2006, 68(3/4): 557-566.
[89] Zhan Liyang, Chen Liqi, Zhang Jiexia, et al. Distribution of N2O in the Jiulongjiang River Estuary and estimation of its air-sae flux during winter[J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2): 189-195.
[詹力扬, 陈立奇, 张介霞, 等. 冬季九龙江河口表层水体 N2O 分布特征及海气通量的初步研究[J]. 台湾海峡, 2011, 30(2): 189-195.]
[90] Rasmussen R A, Krasnec J, Pierotti D. N2O analysis in the atmosphere via electron capture-gas chromatography[J]. Geophysical Research Letters, 1976, 3(10): 615-618.
[91] Zhan L Y, Chen L Q, Zhang J X, et al. A system for the automated static headspace analysis of dissolved N2O in seawater[J]. International Journal of Environmental Analytical Chemistry, 2013, 8: 828-842.
[92] Orsi A H, Whitworth T, Nowlin W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep Sea Research Part I, 1995, 42(5): 641-673.
[1] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[2] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[3] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[4] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[5] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[6] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[7] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[8] 张茂亮,郭正府,成智慧,张丽红,郭文峰. 火山区温室气体排放研究进展[J]. 地球科学进展, 2011, 26(12): 1235-1247.
[9] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[10] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[11] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[12] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[13] 李迎春,林而达,甄晓林. 农业温室气体清单方法研究最新进展[J]. 地球科学进展, 2007, 22(10): 1076-1080.
[14] 吕克解,周小刚. “地球系统探测新原理与新技术”优先领域与地球系统科学[J]. 地球科学进展, 2006, 21(10): 1097-1100.
[15] 詹力扬,陈立奇. 海洋N 2O的研究进展[J]. 地球科学进展, 2006, 21(03): 269-277.
阅读次数
全文


摘要