地球科学进展 ›› 2013, Vol. 28 ›› Issue (11): 1209 -1216.

论文 上一篇    下一篇

海山生物多样性研究进展与展望
张均龙, 徐奎栋 *   
  1. 中国科学院海洋研究所海洋生物分类与系统演化实验室,山东青岛 266071
  • 收稿日期:2013-06-24 出版日期:2013-11-10
  • 通讯作者: 徐奎栋(1969-),男,山东青岛人,研究员,主要从事海洋生物分类与多样性研究. E-mail: kxu@qdio.ac.cn E-mail:kxu@qdio.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项项目三“深海海洋环境与生态系统”(编号:XDA11030201); 中国科学院海洋研究所“一三五”专项“深海底栖生物生物多样性考察和分类”(编号:2012IO060105)资助.

Progress and Prospects in Seamount Biodiversity

Zhang Junlong, Xu Kuidong *   

  1. Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2013-06-24 Online:2013-11-10 Published:2013-11-10
深海的海山生态系统支持着独特的生物群落,是海洋生态系统中物种扩散和进化的重要节点。由于研究的欠缺和认识的不足,国际间对于海山的区系和生物多样性认知存在较大分歧。存在海山特有种假说、物种源汇假说、孤岛假说、绿洲假说等各种假说,且均有争议。综述了海山生物区系和多样性研究的最新进展,指出了目前研究存在的缺陷和不足,并就我国未来有关海山生物区系和多样性研究提出了建议。
Seamounts support unique biological communities and might act as important nodes of species dispersal and evolution in deep ocean ecosystems. Seamounts have been one of the few characteristic ecosystems that remain underexplored in the abyssal world. However, our knowledge of seamount animals remains very limited due to the difficulty in access to technology, resulting in controversial explanation on their fauna, biodiversity, and biogeography. There have been several hypotheses on seamount biota, including the Endemicity Hypothesis, the SourceSink Hypothesis, the Insular Isolation Hypothesis, and the Oasis Hypothesis. We summarize the pros and cons of seamount fauna and biodiversity, and put forward proposals for future investigation on seamount ecosystem.
[1]Menard H W. Marine Geology of the Pacific[M]. New York: McGraw-Hill, 1964.
[2]Epp D, Smoot N C. Distribution of seamounts in the North-Atlantic[J]. Nature,1989, 337(6 204): 254-257.
[3]Clark M R, Rowden A A, Schlacher T, et al. The ecology of seamounts: Structure, function, and human impacts[J]. Annual Review of Marine Science,2010, 2: 253-278.
[4]Yesson C, Clark M R, Taylor M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep Sea Research Part I, 2011, 58(4): 442-453.
[5]Wang Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science,2013, 28(5): 517-520.[汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.]
[6]Stocks K I, Clark M R, Rowden A A, et al. CenSeam, an international program on seamounts within the census of marine life: Achievements and lessons learned[J]. PLoS ONE, 2012, 7 (2): e32031.
[7]Stocks K. Seamount invertebrates: Composition and vulnerability to fishing[R]∥ Morato T, Pauly D, eds. Fiseries Centre Research Reports: Seamounts: Biodiversity and Fisheries. Canada: Fisheries Centre, University of British Columbia, 2004: 17-24.
[8]Wessel P. Global Seamount Database[EB/OL].(2010-01-11)[2013-05-14]. http:∥www.soest.hawaii.edu/pwessel/smts/.
[9]Stocks K. SeamountsOnline: An Online Information System for Seamount Biology. Version 2009-1. World Wide Web Electronic Publication[EB/OL].(2009-10-09)[2013-05-03]. http:∥seamounts.sdsc.edu.
[10]Wilson R R J, Kaufmann R S. Seamount biota and biogeography[M]∥ Keating B H, ed. Seamounts, Islands, and Atolls, Geophysical Monograph Series. Washington DC: American Geophysical Union, 1987: 355-377.
[11]Rogers A D. The biology of seamounts[J]. Advances in Marine Biology, 1994, 30: 305-350.
[12]Smith P, McVeagh S, Mingoia J, et al. Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean[J]. Marine Biology, 2004, 144 (2): 253-261.
[13]Rogers A D, Baco A, Griffiths H, et al. Corals on seamounts[M]∥Pitcher T J, Morato T, Hart P J B, et al, eds. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell, 2007: 141-169.
[14]Tittensor D P, Baco A R, Brewin P E, et al. Predicting global habitat suitability for stony corals on seamounts[J]. Journal of Biogeography, 2009, 36 (6): 1 111-1 128.
[15]Samadi S, Schlacher T, Richer de Forges B. Seamount benthos[M]∥Pitcher T J, Morato T, Hart P J B, et al, eds. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell, 2007: 119-140.
[16]Richer de Forges B, Koslow J A, Poore G C B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific[J]. Nature, 2000, 405(6 789): 944-947.
[17]Koslow J A, Gowlett-Holmes K, Lowry J, et al. Seamount benthic macrofauna off southern Tasmania: Community structure and impacts of trawling[J]. Marine Ecology Progress Series, 2001, 213(11): 111-125.
[18]Stocks K I, Hart P J. Biogeography and biodiversity of seamounts[M]∥Pitcher T J, Morato T, Hart P J B, et al, eds. Seamounts: Ecology, Fisheries, and Conservation. Oxford, UK: Blackwell, 2007: 255-281.
[19]Parker T, Tunnicliffe V. Dispersal strategies of the biota on an oceanic seamount: Implications for ecology and biogeography[J]. The Biological Bulletin, 1994, 187(3): 336-345.
[20]Mullineaux L S, Mills S W. A test of the larval retention hypothesis in seamount-generated flows[J]. Deep Sea Research Part I, 1997, 44(5): 745-770.
[21]Samadi S, Bottan L, Macpherson E, et al. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates[J]. Marine Biology, 2006, 149(6): 1 463-1 475.
[22]Hall-Spencer J, Rogers A, Davies J, et al. Deep-sea coral distribution on seamounts, oceanic islands, and continental slopes in the Northeast Atlantic[J]. Bulletin of Marine Science, 2007, 81(Suppl.1): 135-146.
[23]O’Hara T D. Seamounts: Centres of endemism or species richness for ophiuroids?[J]. Global Ecology and Biogeography, 2007, 16(6): 720-732.
[24]Gillet P, Dauvin J C. Polychaetes from the Atlantic seamounts of the southern Azores: Biogeographical distribution and reproductive patterns[J]. Journal of the Marine Biological Association of the UK, 2000, 80(6): 1 019-1 029.
[25]Gillet P, Dauvin J C. Polychaetes from the Irving, Meteor and Plato Seamounts, North Atlantic Ocean: Origin and geographical relationships[J]. Journal of the Marine Biological Association of the UK, 2003, 83(1): 49-53.
[26]Oliverio M, Gofas S. Coralliophiline diversity at mid-Atlantic seamounts (Neogastropoda, Muricidae, Coralliophilinae)[J]. Bulletin of Marine Science, 2006, 79(1): 205-230.
[27]vila S P, Malaquias M A E. Biogeographical relationships of the molluscan fauna of the Ormonde Seamount (Gorringe Bank, Northeast Atlantic Ocean)[J]. Journal of Molluscan Studies, 2003, 69: 145-150.
[28]Rowden A A, O’Shea S, Clark M R. Benthic Biodiversity of Seamounts on the Northwest Chatham Rise[R].Wellington: Marine Biodiversity Biosecurity Report No 2, 2002: 21.
[29]Rowden A A, Clark M, O’Shea S, et al. Benthic Biodiversity of Seamounts on the Southern Kermadec Volcanic Arc[R]. Wellington: Marine Biodiversiiy Biosecurity Report No 3, 2003: 23.
[30]McClain C R, Lundsten L, Ream M, et al. Endemicity, biogeography, composition, and community structure on a Northeast Pacific Seamount[J]. PLoS ONE, 2009, 4(1): e4141.
[31]O’Hara T D, Rowden A A, Williams A. Cold-water coral habitats on seamounts: Do they have a specialist fauna?[J]. Diversity and Distributions, 2008, 14(6): 925-934.
[32]Aboim M, Menezes G, Schlitt T, et al. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis[J]. Molecular Ecology,2005,14 (5):1 343-1 354.
[33]Worm B, Lotze H K, Myers R A. Predator diversity hotspots in the blue ocean[J]. Proceedings of the National Academy of Sciences, 2003, 100(17): 9 884-9 888.
[34]Genin A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[J]. Journal of Marine Systems, 2004, 50(1): 3-20.
[35]Martin A P, Humphreys R, Palumbi S R. Population genetic structure of the armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: Application of the polymerase chain reaction to fisheries problems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49 (11): 2 386-2 391.
[36]Sedberry G R, Carlin J L, Chapman R W, et al. Population structure in the pan-oceanic wreckfish, Polyprion americanus (Teleostei: Polyprionidae), as indicated by mtDNA variation[J]. Journal of Fish Biology, 1996, 49: 318-329.
[37]Hoarau G, Borsa P. Extensive gene flow within sibling species in the deep-sea fish Beryx splendens[J]. Comptes Rendus de l Académie des Sciences Serie III—Sciences de la Vie-Life Sciences, 2000, 323(3): 315-325.
[38]Stockley B, Menezes G, Pinho M R, et al. Genetic population structure in the black-spot sea bream (Pagellus bogaraveo Brünnich, 1768) from the NE Atlantic[J]. Marine Biology, 2005, 146(4): 793-804.
[39]Shaw P W, Pierce G J, Boyle P R. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers[J]. Molecular Ecology, 1999, 8(3): 407-417.
[40]Rogers A, Morley S, Fitzcharles E, et al. Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sectors of the Southern Ocean[J]. Marine Biology, 2006, 149(4): 915-924.
[41]Baco A R, Shank T M. Population genetic structure of the Hawaiian precious coral Corallium lauuense (Octocorallia: Coralliidae) using microsatellites[M]∥Freiwald A, Roberts J M, eds. Cold-Water Corals and Ecosystems. Berlin Heidelberg: Springer, 2005: 663-678.
[42]Shank T M. Seamounts: Deep-ocean laboratories of faunal connectivity, evolution, and endemism[J]. Oceanography, 2010, 23 (1): 108-122.
[43]McClain C R, Lundsten L, Barry J, et al. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount[J]. Marine Ecology, 2010, 31 (Suppl.1): 14-25.
[44]Lundsten L, Barry J P, Cailliet G M, et al. Benthic invertebrate communities on three seamounts off southern and central California, USA[J]. Marine Ecology Progress Series, 2009, 374: 23-32.
[45]Cartes J E, Carrasson M. Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: The case of the western mediterranean assemblages[J]. Deep Sea Research Part I, 2004, 51(2): 263-279.
[46]Wishner K, Levin L, Gowing M, et al. Involvement of the oxygen minimum in benthic zonation on a deep seamount[J]. Nature, 1990, 346(6 279): 57-59.
[47]Levin L A, Huggett C L, Wishner K F. Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the Eastern Pacific-Ocean[J]. Journal of Marine Research, 1991, 49(4): 763-800.
[48]Levin L A, Thomas C L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central pacific seamounts[J]. Deep Sea Research Part I, 1989, 36(12): 1 897-1 915.
[49]Henry L A, Roberts J M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic[J]. Deep Sea Research Part I, 2007, 54(4): 654-672.
[50]Pratt R M. Photography of seamounts[M]∥Hersey J B, ed. Deep-sea Photography Baltimor. Beltimor: The John Hopkins Press, 1967: 145-158.
[51]Raymore P A. Photographic investigations on three seamounts in the Gulf of Alaska[J]. Pacific Science, 1982, 36(1): 15-34.
[52]Levin L A, Mccann L D, Thomas C L. The ecology of polychaetes on deep seamounts in the eastern Pacific-Ocean[J]. Ophelia, 1991,(Suppl.5): 467-476.
[53]Mienis F, de Stigter H C, White M, et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE rockall trough margin, NE Atlantic Ocean[J]. Deep Sea Research Part I, 2007, 54(9): 1 655-1 674.
[54]Genin A, Dower J F. Seamount plankton dynamics[M]∥Pitcher T J, Morato T, Hart P J B, et al, eds. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell, 2007: 85-100.
[55]Dower J F, Mackas D L. “Seamount effects” in the zooplankton community near Cobb Seamount[J]. Deep Sea Research Part I, 1996, 43(6): 837-858.
[56]Morato T, Varkey D A, Damaso C, et al. Evidence of a seamount effect on aggregating visitors[J]. Marine Ecology Progress Series, 2008, 357: 23-32.
[57]Froese R, Sampang A. Taxonomy and biology of seamount fishes. Seamount: Biodiversity and fisheries[R]∥Morato T, Pauly D, eds. Fiseries Centre Research Reports. Seamounts: Biodiversity and Fisheries. Fisheries Centre, University of British Columbia, Canada, 2004: 25-32.
[58]Althaus F, Williams A, Schlacher T A, et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting[J]. Marine Ecology Progress Series, 2009, 397: 279-294.
[59]Clark M R, Rowden A A. Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand[J]. Deep Sea Research Part I, 2009, 56(9): 1 540-1 554.
[60]Glover A G, Smith C R. The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025[J]. Environmental Conservation, 2003, 30(3): 219-241.
[61]Davies A J, Roberts J M, Hall-Spencer J. Preserving deep-sea natural heritage: Emerging issues in offshore conservation and management[J]. Biological Conservation, 2007, 138(3/4): 299-312.
[62]Koslow J A, Boehlert G W, Gordon J D M, et al. Continental slope and deep-sea fisheries: Implications for a fragile ecosystem[J]. Ices Journal of Marine Science, 2000, 57(3): 548-557.
[63]Probert P K, McKnight D, Grove S L. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1997, 7(1): 27-40.
[64]Qin Yunshan, Yin Hong. Western Pacific: The strategic priority in China deep sea research[J]. Advances in Earth Science, 2011, 26 (3): 245-248.[秦蕴珊, 尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.]
[65]Wang Pinxian. Coupled development in marine science and technology: A retrospect[J]. Advances in Earth Science, 2011, 26(6): 644-649.[汪品先. 海洋科学和技术协同发展的回顾[J]. 地球科学进展, 2011, 26(6): 644-649.]
[1] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[2] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[5] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[6] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[7] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[8] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[9] 陈春, 高峰, 鲁景亮, 陈松丛. 日本海洋科技战略计划与重点研究布局及其对我国的启示[J]. 地球科学进展, 2016, 31(12): 1247-1254.
[10] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[11] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[12] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[13] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[14] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[15] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
阅读次数
全文


摘要