[1] Cavanaugh C M, McKiness Z, Newton I L G,et al. Marine chemosynthetic symbioses[J].The Prokaryotes, 2006, 1: 475-507.
[2] De Bary A. Die Erscheinung der Symbiose: Vortrag[M].Germany: Verlag von Karl Trübner J, 1879.
[3] Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis[J].Nature Reviews Microbiology, 2008, 6: 725-740.
[4] Cavanaugh C M. Microbial symbiosis: Patterns of diversity in the marine environment[J].American Zoologist,1994, 34: 79-89.
[5] Corliss J B, Dymond J, Gordon L I,et al. Submarine thermal springs on the Galapagos Rift[J].Science, 1979, 203: 1 073-1 083.
[6] Laubier L. Ecosystemes benthiques profonds et chimiosynthese bacterienne: Sources hydrothermales et suintements[C]∥Intervention Sous-Marine ISM 90. France:Toulon, 1990: 3-5.
[7] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J].Deep-Sea Research, 1977, 24: 857-863.
[8] Southward A, Southward E C, Brattegard T,et al. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora)[J].Journal of the Marine Biological Association of the United Kingdom, 1979, 59: 133-148.
[9] Felbeck H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia Pachyptila Jones (Vestimentifera)[J].Science, 1981, 213: 336.
[10] Childress J J, Fisher C, Brooks J,et al. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: Mussels fueled by gas[J].Science, 1986, 233: 1 306.
[11] Cavanaugh C, Levering P, Maki J,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature, 1987, 325: 346-348.
[12] Petersen J M, Zielinski F U, Pape T,et al. Hydrogen is an energy source for hydrothermal vent symbioses[J].Nature, 2011, 476: 176-180.
[13] Wang Chunsheng, Yang Junyi, Zhang Dongsheng,et al. A review on deep-sea hydrothermal vent communities[J].Journal of Xiamen University (Natural Science), 2006,45(Suppl.2): 141-149.[王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述[J]. 厦门大学学报:自然科学版, 2006,45(增刊2): 141-149.]
[14] Huang Dingyong, Lin Rongcheng, Niu Wentao,et al. Summary of deep sea hydrothermal activity and hydrothermal vent communities[J].Journal of Central South University (Science and Technology), 2011, 42(Suppl.2): 196-203.[黄丁勇, 林荣澄, 牛文涛, 等. 深海热液活动及热液生物群落研究概述[J]. 中南大学学报:自然科学版, 2011, 42(增刊2):196-203.]
[15] Wang Liling, Lin Jingxing, Hu Jianfang. Recent progress in deep-sea hydrothermal vent communities[J].Advances in Earth Science, 2008,23(6): 604-612.[王丽玲, 林景星, 胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.]
[16] Kouris A, Kim Juniper S, Frebourg G,et al. Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge[J].Marine Ecology, 2007, 28: 63-71.
[17] Fiala-Medioni A. Mise en évidence par microscopie électronique à transmission de l’abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes[J].Comptes rendus des séances de l’Académie des sciences Série 3, Sciences de la vie,1984, 298: 487-492.
[18] Thurber A R, Jones W J, Schnabel K. Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab[J].PLoS One, 2011, 6(11): e26243.
[19] Bright M, Giere O. Microbial symbiosis in Annelida[J].Symbiosis,2005, 38: 1-45.
[20] Boss K, Turner R. The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum[J].Malacologia,1980, 20: 161-194.
[21] Johnson S B, Young C R, Jones W J,et al. Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault[J].The Biological Bulletin, 2006, 210: 140-157.
[22] Katz S, Cavanaugh C M, Bright M. Symbiosis of epi-and endocuticular bacteria withHelicoradomenia spp.(Mollusca, Aplacophora, Solenogastres) from deep-sea hydrothermal vents[J].Marine Ecology Progress Series, 2006, 320: 89-99.
[23] Reid R G B, Bernard F R. Gutless bivalves[J].Science, 1980, 208: 609-610.
[24] Roeselers G, Newton I L G. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves[J].Applied Microbiology and Biotechnology,2012,94(1): 1-10.
[25] Taylor J D, Glover E A. Lucinidae (Bivalvia)-the most diverse group of chemosymbiotic molluscs[J].Zoological Journal of the Linnean Society, 2006, 148: 421-438.
[26] Dufour S C. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae[J].The Biological Bulletin, 2005, 208: 200-212.
[27] Childress J J, Fisher C R, Favuzzi J A,et al. Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts[J].Physiological zoology, 1991,64: 1 444-1 470.
[28] Southward E C. The morphology of bacterial symbioses in the gills of mussels of the genera Adipicola and Idas (Bivalvia: Mytilidae)[J].Journal of Shellfish Research, 2008, 27: 139-146.
[29] Urakawa H, Dubilier N, Fujiwara Y,et al. Hydrothermal vent gastropods from the same family (Provannidae) harbour ε-and γ-proteobacterial endosymbionts[J].Environmental Microbiology, 2005, 7: 750-754.
[30] Bates A E. Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents[J].Marine Ecology Progress Series, 2007, 347: 87-99.
[31] Goffredi S K, Warén A, Orphan V J,et al. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean[J].Applied and Environmental Microbiology, 2004, 70: 3 082-3 090.
[32] Halanych K M. Molecular phylogeny of siboglinid annelids (aka pogonophorans): A review[J].Hydrobiologia, 2005, 535: 297-307.
[33] Kubota N, Kanemori M, Sasayama Y,et al. Identification of endosymbionts in Oligobrachia mashikoi (Siboglinidae, Annelida)[J].Microbes and Environments, 2007, 22: 136-144.
[34] Schmidt C, Le Bris N, Gaill F. Interactions of deep-sea vent invertebrates with their environment: The case of Rimicaris exoculata[J].Journal of Shellfish Research, 2008, 27: 79-90.
[35] Goffredi S, Jones W, Erhlich H,et al. Epibiotic bacteria associated with the recently discovered Yeti crab,Kiwa hirsuta[J].Environmental Microbiology,2008, 10: 2 623-2 634.
[36] Flores J F, Fisher C R, Carney S L,et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2 713-2 718.
[37] Zal F, Leize E, Lallier F H,et al. S-Sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding byRiftia pachyptila hemoglobins[J].Proceedings of the National Academy of Sciences,1998, 95: 8 997-9 002.
[38] Cordes E E, Arthur M A, Shea K,et al. Modeling the mutualistic interactions between tubeworms and microbial consortia[J].PLoS Biology, 2005, 3(3): e77.
[39] Doeller J E, Kraus D W, Colacino J M,et al. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca)[J].The Biological Bulletin,1988, 175: 388-396.
[40] Dufour S C, Felbeck H. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves[J].Nature, 2003, 426: 65-67.
[41] Johnson K S, Childress J J, Beehler C L,et al. Biogeochemistry of hydrothermal vent mussel communities: The deep-sea analogue to the intertidal zone[J].Deep-Sea Research Part I,1994, 41: 993-1 011.
[42] Ott J, Novak R, Schiemer F,et al. Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic ectosymbionts[J].Marine Ecology, 2008, 12: 261-279.
[43] Cavanaugh C M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats[J].Nature, 1983,302:58-61.
[44] Dubilier N, Windoffer R, Giere O. Ultrastructure and stable carbon isotope composition of the hydrothermal vent musselsBathymodiolus brevior andB. sp. affinisbrevior from the North Fiji Basin, western Pacific[J].Marine Ecology Progress Series, 1998, 165: 187-193.
[45] Hentschel U, Cary S C, Felbeck H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata[J].Marine Ecology Progress Series,1993, 94: 35-35.
[46] Cavanaugh C M, Levering P R, Maki J S,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature,1987,325:346-348.
[47] Nussbaumer A D, Fisher C R, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms[J].Nature, 2006, 441: 345-348.
[48] Distel D L, Lee H, Cavanaugh C M. Intracellular coexistence of methano-and thioautotrophic bacteria in a hydrothermal vent mussel[J].Proceedings of the National Academy of Sciences,1995, 92: 9 598-9 602.
[49] McKiness Z, Cavanaugh C. The ubiquitous mussel: Bathymodiolus aff. brevior symbiosis at the Central Indian Ridge hydrothermal vents[J].Marine Ecology Progress Series, 2005, 295: 183-190.
[50] Duperron S, Bergin C, Zielinski F,et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge[J].Environmental Microbiology, 2006, 8: 1 441-1 447.
[51] Moran N A. Tracing the evolution of gene loss in obligate bacterial symbionts[J].Current Opinion in Microbiology, 2003, 6: 512-518.
[52] Harmer T L, Rotjan R D, Nussbaumer A D,et al. Free-living tube worm endosymbionts found at deep-sea vents[J].Applied and Environmental Microbiology, 2008, 74: 3 895-3 898.
[53] McFall-Ngai M J. The development of cooperative associations between animals and bacteria: Establishing détente among domains[J].American Zoologist,1998, 38: 593-608.
[54] Trask J L, Van Dover C L. Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge[J].Limnology and Oceanography, 1999,44(2): 334-343.
[55] Humes A G, Lutz R A. Aphotopontius acanthinus, new species (Copepoda: Siphonostomatoida), from deep-sea hydrothermal vents on the East Pacific Rise[J].Journal of Crustacean Biology, 1994,14(2): 337-345.
[56] Van Dover C L. The Ecology of Deep-Sea Hydrothermal Vents[M]. Princeton: Princeton University Press, 2000.
[57] Sarrazin J, Juniper S K. Biological characteristics of a hydrothermal edifice mosaic community[J].Marine Ecology Progress Series, 1999, 185: 1-19.
[58] Schrenk M O, Huber J A, Edwards K J. Microbial provinces in the subseafloor[J].Annual Review of Marine Science, 2010, 2: 279-304.
[59] Smith C. Chemosynthesis in the deep-sea: Life without the sun[J]. Biogeosciences Discussions, 2012, 9: 17 037.
[60] German C, Von Damm K. Hydrothermal Processes[M]. London: Elsevier, 2006.
[61] Yang T, Lyons S, Aguilar C,et al. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters[J].Frontiers in Microbiology, 2011,2:130,doi:10.3389/fmicb.72011.00130.
[62] Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: Past, present, and future[J].Oceanography,2012,25(1):218-233.
[63] Pante E, Corbari L, Thubaut J,et al. Exploration of the deep-sea fauna of Papua New Guinea[J].Oceanography, 2012: 25(3):214. |