[1] |
Suttle C A.Viruses in the sea[J]. Nature, 2005, 437(7 057): 356.
doi: 10.1038/nature04160
URL
|
[2] |
Suttle C A.Marine viruses—Major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812.
doi: 10.1038/nrmicro1750
URL
pmid: 17853907
|
[3] |
Jiao Nianzhi.Marine Microbial Ecology[M]. Beijing: Science Press, 2006.
|
|
[焦念志. 海洋微型生物生态学[M]. 北京: 科学出版社, 2006.]
|
[4] |
Wommack K E, Colwell R R.Virioplankton: Viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 69-114.
doi: 10.1128/MMBR.64.1.69-114.2000
URL
|
[5] |
Fuhrman J A, Suttle C A.Viruses in marine planktonic systems[J]. Oceanography, 1993, 6(2): 51-63.
doi: 10.5670/oceanog.1993.14
URL
|
[6] |
Brussaard C P D, Wilhelm S W, Thingstad F, et al. Global-scale processes with a nanoscale drive: The role of marine viruses[J]. ISME Journal, 2008, 2(6): 575-578.
doi: 10.1038/ismej.2008.31
URL
|
[7] |
Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 1983, 10: 257-263.
doi: 10.3354/meps010257
URL
|
[8] |
Azam F.Microbial control of oceanic carbon flux: The plot thickens[J]. Science, 1998, 280(5 364): 694-696.
doi: 10.1126/science.280.5364.694
URL
|
[9] |
Ren Chengzhe, Yuan Huamao, Song Jinming, et al. Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017, 32(9): 959-971.
|
|
[任成喆, 袁华茂, 宋金明, 等. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.]
doi: 10.11867/j.issn.1001-8166.2017.09.0959
URL
|
[10] |
Smith E M, Prairie Y T.Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability[J]. Limnology and Oceanography, 2004, 49(1): 137-147.
doi: 10.4319/lo.2004.49.1.0137
URL
|
[11] |
Kritzberg E S, Cole J J, Pace M M, et al. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial inputs[J]. Aquatic Microbial Ecology, 2005, 38(2): 103-111.
doi: 10.3354/ame038103
URL
|
[12] |
Maurice C F, Bouvier T, Comte J, et al. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes[J]. Environmental Microbiology, 2010, 12(3): 628-641.
doi: 10.1111/j.1462-2920.2009.02103.x
URL
pmid: 20002137
|
[13] |
Cole J J, Findlay S, Pace M L.Bacterial production in fresh and saltwater ecosystems: A cross-system overview[J]. Marine Ecology Progress Series, 1988, 43: 1-10.
doi: 10.3354/meps043001
URL
|
[14] |
Ducklow H W, Carlson C A.Oceanic bacterial production[M]∥Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 1992: 113-181.
|
[15] |
del Giorgio P A, Cole J J. Bacterial growth efficiency in natural aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1998, 29: 503-541.
doi: 10.1146/annurev.ecolsys.29.1.503
URL
|
[16] |
Biddanda B, Ogdahl M, Cotner J.Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters[J]. Limnology and Oceanography, 2001, 46(3): 730-739.
doi: 10.4319/lo.2001.46.3.0730
URL
|
[17] |
Carlson C A, Giorgio P D, Herndl G J.Microbes and the dissipation of energy and respiration: From cells to ecosystems[J]. Oceanography, 2007, 20(2): 89-100.
doi: 10.5670/oceanog.2007.52
URL
|
[18] |
Kirchman D L.Processes in Microbial Ecology[M]. Oxford: Oxford University Press, 2012.
|
[19] |
Hansell D A, Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter Second edition[M]. London: Academic Press, 2014.
|
[20] |
Mann N, Cook A, Millard A, et al. Marine ecosystems: Bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6 950): 741.
doi: 10.1038/424741a
URL
pmid: 12917674
|
[21] |
Sharon I, Battchikova N, Aro E, et al. Comparative metagenomics of microbial traits within oceanic viral communities[J]. ISME Journal, 2011, 5(7): 1 178-1 190.
doi: 10.1038/ismej.2011.2
URL
pmid: 21307954
|
[22] |
Thompson L, Zeng Q, Kelly L, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): E757-E764.
doi: 10.1073/pnas.1102164108
URL
|
[23] |
Anantharaman K, Duhaime M, Breier J, et al. Sulfur oxidation genes in diverse deep-sea viruses[J]. Science, 2014, 344(6 185): 757-760.
doi: 10.1126/science.1252229
URL
pmid: 24789974
|
[24] |
Hagay E, Mandel-Gutfreund Y, Béj O.Comparative metagenomics analyses reveal viral-induced shifts of host metabolism towards nucleotide bio-sysnthesis[J]. Microbiome, 2014, 2(1): 9.
doi: 10.1186/2049-2618-2-9
URL
pmid: 24666644
|
[25] |
Jover L F, Effler T C, Buchan A, et al. The elemental composition of virus particles: Implications for marine biogeochemical cycles[J]. Nature Reviews Microbiology, 2014, 12(7): 519-528.
doi: 10.1038/nrmicro3289
URL
pmid: 24931044
|
[26] |
Zhang R, Wei W, Cai L.The fate and biogeochemical cycling of viral elements[J]. Nature Reviews Microbiology, 2014, 12: 850-851.DOI:10.1038/nrmicro3384.
doi: 10.1038/nrmicro3384
URL
pmid: 25396723
|
[27] |
Middelboe M.Bacterial growth rate and marine virus-host dynamics[J]. Microbial Ecology, 2000, 40(2): 114-124.
|
[28] |
Philosof A, Battchikova N, Aro E, et al. Marine cyanophages: Tinkering with the electron transport chain[J]. ISME Journal, 2011, 5(10): 1 568-1 570.
doi: 10.1038/ismej.2011.43
URL
pmid: 21509045
|
[29] |
Dwivedi B, Xue B, Lundin D, et al. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes[J]. BMC Evolutionary Biology, 2013, 13: 33.
doi: 10.1186/1471-2148-13-33
URL
pmid: 3653736
|
[30] |
Zeng Q, Chisholm S W.Marine viruses exploit their host’s two-component regulatory system in response to resource limitation[J]. Current Biology, 2012, 22(2): 124-128.
doi: 10.1016/j.cub.2011.11.055
URL
pmid: 22244998
|
[31] |
Williamson S, Rusch D, Yooseph S, ,et al. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE, 2008, 3(1): e1 456.
|
[32] |
Crummett L T, Puxty R J, Weihe C, et al. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses[J]. Virology, 2016, 499: 219-229.
doi: 10.1016/j.virol.2016.09.016
URL
pmid: 27693926
|
[33] |
Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature, 2005, 438(7 064): 86-89.
doi: 10.1038/nature04111
URL
pmid: 16222247
|
[34] |
Sharon I, Tzahor S, Williamson S, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment[J]. ISME Journal, 2007, 1(6): 492-501.
doi: 10.1038/ismej.2007.67
URL
pmid: 18043651
|
[35] |
Mann N H, Clokie M R J, Millard A, et al. The genome of S-PM2, a ‘photosynthetic’ T4-type bacteriophage that infects marine Synechococcus[J]. Journal of Bacteriology, 2005, 187(9): 3 188-3 200.
doi: 10.1128/JB.187.9.3188-3200.2005
URL
pmid: 15838046
|
[36] |
Ankrah N Y D, May A L, Middleton J L, et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition[J]. ISME Journal, 2014, 8(5): 1 089-1 100.
doi: 10.1038/ismej.2013.216
URL
pmid: 3996693
|
[37] |
De Smet J, Zimmermann M, Kogadeeva M, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J]. ISME Journal, 2016, 10(8): 1 823-1 835.
doi: 10.1038/ismej.2016.3
URL
pmid: 26882266
|
[38] |
Azam F, Malfatti F.Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 2007, 5(10): 782-791.
doi: 10.1038/nrmicro1747
URL
|
[39] |
Fuhrman J A.Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6 736): 541-548.
doi: 10.1038/21119
URL
|
[40] |
Weitz J S, Stock C A, Wilhelm S W, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes[J]. ISME Journal, 2015, 9(6): 1 352-1 364.
doi: 10.1038/ismej.2014.220
URL
pmid: 25635642
|
[41] |
Bonilla-Findji O, Malits A, Lefèvre D, et al. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 2008, 55(5): 790-800.
doi: 10.1016/j.dsr2.2007.12.004
URL
|
[42] |
Motegi C, Nagata T, Miki T, et al. Viral control of bacterial growth efficiency in marine pelagic environments[J]. Limnology and Oceanography, 2009, 54(6): 1 901-1 910.
doi: 10.4319/lo.2009.54.6.1901
URL
|
[43] |
Xu J, Jing H, Sun M, et al. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1 573-1 583.
doi: 10.1002/2013JG002296
URL
|
[44] |
Middelboe M, Jørgensen N O G, Kroer N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton[J]. Applied and Environmental Microbiology, 1996, 62(6): 1 991-1 997.
|
[45] |
Liu H, Yuan X, Xu J, et al. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters[J]. Scientific Reports, 2015, 5: 14 217.
doi: 10.1038/srep14217
URL
|
[46] |
Noble R T, Middelboe M, Fuhrman J A.The effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton[J]. Aquatic Microbial Ecology, 1999, 18(1): 1-13.
doi: 10.3354/ame018001
URL
|
[47] |
Middelboe M, Lyck P G.Regeneration of dissolved organic matter by viral lysis in marine microbial communities[J]. Aquatic Microbial Ecology, 2002, 27(2): 187-194.
doi: 10.3354/ame027187
URL
|
[48] |
Eissler Y, Quiñones R A.The effect of viral concentrate addition on the respiration rate of Chaetoceros gracilis cultures and microplankton from a shallow bay (Coliumo, Chile)[J]. Journal of Plankton Research, 2003, 25(8): 927-938.
doi: 10.1093/plankt/25.8.927
URL
|
[49] |
Malits A, Weinbauer M G.Effect of turbulence and viruses on prokaryotic cell size, production and diversity[J]. Aquatic Microbial Ecology, 2009, 54(3): 243-254.
doi: 10.1016/j.sysconle.2005.12.002
URL
|
[50] |
Xu J, Sun M, Shi Z, et al. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: Implications for CO2 emission[J]. PloS ONE, 2014, 9(7): e102490.
doi: 10.1371/journal.pone.0102490
URL
pmid: 25036641
|
[51] |
Bratbak G, Heldal M, Norland S, et al. Viruses as partners in spring bloom microbial trophodynamics[J]. Applied and Environmental Microbiology, 1990, 56(5): 1 400-1 405.
doi: 10.1007/BF01200945
URL
pmid: 16348190
|
[52] |
Pradeep Ram A S, Colombet J, Perriere F, et al. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments[J]. FEMS Microbial Ecology, 2015, 91(2): 1-12.
doi: 10.1093/femsec/fiv002
URL
pmid: 25764557
|
[53] |
Pradeep Ram A S P, Colombet J, Perriere F, et al. Viral regulation of prokaryotic carbon metabolism in a hypereutrophic freshwater reservoir ecosystem (Villerest, France)[J]. Frontiers in Microbiology, 2016, 7: 81.
doi: 10.3389/fmicb.2016.00081
URL
pmid: 4746248
|
[54] |
Pradeep Ram A S, Palesse S, Colombet J, et al. Variable viral and grazer control of prokaryotic growth efficiency in temperate freshwater lakes (French Massif Central)[J]. Microbial Ecology, 2013, 66(4): 906-916.
doi: 10.1007/s00248-013-0289-x
URL
pmid: 24061344
|
[55] |
Wilhelm S W, Suttle C A.Viruses and nutrient cycles in the sea[J]. Bioscience, 1999, 49(10): 781-788.
doi: 10.2307/1313569
URL
|
[56] |
Weinbauer M G.Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181.
doi: 10.1016/j.femsre.2003.08.001
URL
|
[57] |
Hansell D A.Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Ecology and Systematics, 2013, 5: 421-445.
doi: 10.1146/annurev-marine-120710-100757
URL
pmid: 22881353
|
[58] |
Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: New insights stimulated by a controversy[J]. Oceanography, 2009, 22(4): 52-61.
doi: 10.5670/oceanog.2009.109
URL
|
[59] |
Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5 682): 367-371.
doi: 10.1126/science.1097403
URL
pmid: 15256665
|
[60] |
Volk T, Hoffert M I.Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present. American Geophysical Union,1985.DOI:10.1029/GM032.
|
[61] |
Passow U, Carlson C A.The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271.
doi: 10.3354/meps09985
URL
|
[62] |
Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
doi: 10.1038/nrmicro2386
URL
pmid: 20601964
|
[63] |
Jiao Nianzhi, Li Chao, Wang Xiaoxue.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
|
|
[焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.]
doi: 10.11867/j.issn.1001-8166.2016.07.0668
URL
|
[64] |
Weinbauer M G, Rassoulzadegan F.Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1): 1-11.
doi: 10.1046/j.1462-2920.2003.00539.x
URL
pmid: 14686936
|
[65] |
Rivkin R B, Legendre L.Biogenic carbon cycling in the upper ocean: Effects of microbial respiration[J]. Science, 2001, 291(5 512): 2 398-2 400.
doi: 10.1126/science.291.5512.2398
URL
pmid: 11264533
|
[66] |
Shelford E J, Middelboe M, Møller E F, et al. Virus-driven nitrogen cycling enhances phytoplankton growth[J]. Aquatic Microbial Ecology, 2012, 66(1): 41-46.
doi: 10.3354/ame01553
URL
|
[67] |
Middelboe M, Jørgensen N O G. Viral lysis of bacteria: An important source of dissolved amino acids and cell wall compounds[J]. Journal of the Marine Biological Association of the United Kingdom, 2006, 86(3): 605-612.
doi: 10.1017/S0025315406013518
URL
|
[68] |
Goldman J C, Caron D A, Dennett M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio[J]. Limnology and Oceanography, 1987, 32(6): 1 239-1 252.
doi: 10.4319/lo.1987.32.6.1239
URL
|
[69] |
Poorvin L, Rinta-Kanto J M, Hutchins D A, et al. Viral release of iron and its bioavailability to marine plankton[J]. Limnology and Oceanography, 2004, 49(5): 1 734-1 741.
doi: 10.4319/lo.2004.49.5.1734
URL
|
[70] |
Mioni C E, Poorvin L, Wilhelm S W.Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: Characterization using an Fe-specific bioreporter[J]. Aquatic Microbial Ecology, 2005, 41(3): 233-245.
doi: 10.3354/ame041233
URL
|
[71] |
Tomaru Y, Tanabe H, Yamanaka S, et al. Effects of temperature and light on stability of microalgal viruses, HaV, HcV, and HcRNAV[J]. Plankton Biology and Ecology, 2005, 52(1): 1-6.
URL
|
[72] |
Matteson A R, Loar S N, Pickmere S, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand[J]. FEMS Microbiology Ecology, 2012, 79(3): 709-719.
doi: 10.1111/j.1574-6941.2011.01251.x
URL
pmid: 22092871
|
[73] |
Paul J H.Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas?[J]. ISME Journal, 2008, 2(6): 579-589.
doi: 10.1038/ismej.2008.35
URL
pmid: 18521076
|
[74] |
Delisle A L, Levin R E.Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens[J]. Antonie Van Leeuwenhoek, 1972, 38(1): 1-8.
doi: 10.1007/BF02328071
URL
pmid: 4537085
|
[75] |
Mojica K D A, Brussaard C P D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments[J]. FEMS Microbiology Ecology, 2014, 89(3): 495-515.
doi: 10.1111/1574-6941.12343
URL
pmid: 24754794
|
[76] |
White P A, Kalff J, Rasmussen J B, et al. The effect of temperature and algal biomass on bacterial production and specific growth-rate in fresh-water and marine habitats[J]. Microbial Ecology, 1991, 21(1): 99-118.
doi: 10.1007/BF02539147
URL
pmid: 24194204
|
[77] |
Wiebe W J, Sheldon W M, Pomeroy L R.Bacterial-growth in the cold-evidence for an enhanced substrate requirement[J]. Applied and Environmental Microbiology, 1992, 58(1): 359-364.
doi: 10.1016/S0065-2164(08)70256-9
URL
pmid: 195215
|
[78] |
Suttle C A, Chen F.Mechanisms and rates of decay of marine viruses in seawater[J]. Applied and Environmental Microbiology, 1992, 58(11): 3 721-3 729.
doi: 10.1002/yea.320081212
URL
pmid: 183166
|
[79] |
Weinbauer M G, Suttle C A.Lysogeny and prophage induction in coastal and offshore bacterial communities[J]. Aquatic Microbial Ecology, 1999, 18(3): 217-225.
doi: 10.3354/ame018217
URL
|
[80] |
Kellogg C A, Paul J H.Degree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages[J]. Aquatic Microbial Ecology, 2002, 27(1): 13-20.
doi: 10.3354/ame027013
URL
|
[81] |
Traving S J, Clokie M R J, Middelboe M. Increased acidification has profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses[J]. FEMS Microbiology Ecology, 2014, 87(1): 133-141.
doi: 10.1111/1574-6941.12199
URL
pmid: 24003947
|
[82] |
Jacquet S, Heldal M, Iglesias-Rodriguez D, et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection[J]. Aquatic Microbial Ecology, 2002, 27(2): 111-124.
doi: 10.3354/ame027111
URL
|
[83] |
Clokie M R J, Mann N H. Marine cyanophages and light[J]. Environmental Microbiology, 2006, 8(12): 2 074-2 082.
doi: 10.1111/j.1462-2920.2006.01171.x
URL
pmid: 17107549
|
[84] |
Wilhelm S W, Jeffrey W H, Dean A L, et al. UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean[J]. Aquatic Microbial Ecology, 2003, 31(1): 1-8.
doi: 10.3354/ame031001
URL
|
[85] |
Furuta M, Schrader J O, Schrader H S, et al. Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV[J]. Applied and Environmental Microbiology, 1997, 63(4): 1 551-1 556.
doi: 10.1089/oli.1.1997.7.125
URL
pmid: 168447
|
[86] |
Orgata H, Ray J, Toyoda K, et al. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment[J]. ISME Journal, 2011, 5(7): 1 143-1 151.
doi: 10.1038/ismej.2010.210
URL
pmid: 21248859
|
[87] |
Santini S, Jeudy S, Bartoli J, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10 800-10 805.
doi: 10.1073/pnas.1303251110
URL
|
[88] |
Cordova A, Deserno M, Gelbart W M, et al. Osmotic shock and the strength of viral capsids[J]. Biophysical Journal, 2003, 85(1): 70-74.
doi: 10.1016/S0006-3495(03)74455-5
URL
|
[89] |
Kukkaro P, Bamford D H.Virus-host interactions in environments with a wide range of ionic strengths[J]. Environmental Microbiology Reports, 2009, 1(1): 71-77.
doi: 10.1111/j.1758-2229.2008.00007.x
URL
pmid: 23765723
|
[90] |
Zachary A.Physiology and ecology of bacteriophages of the marine bacterium Beneckea natriegens: Salinity[J]. Applied and Environmental Microbiology, 1976, 31(3): 415-422.
URL
pmid: 938035
|
[91] |
Williamson S J, Paul J H.Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage-host system[J]. Microbial Ecology, 2006, 52(2): 217-225.
doi: 10.1007/s00248-006-9113-1
URL
pmid: 16897298
|
[92] |
Wilson W H, Carr N G, Mann N H.The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803[J]. Journal of Phycology, 1996, 32(4): 506-516.
doi: 10.1111/j.0022-3646.1996.00506.x
URL
|
[93] |
Wilson W H, Turner S, Mann N H.Population dynamics of phytoplankton and viruses in a phosphate-limited mesocosm and their effect on DMSP and DMS production[J]. Estuarine Coastal and Shelf Science, 1998, 46(2): 49-59.
doi: 10.1006/ecss.1998.0333
URL
|
[94] |
Abedon S T, Herschler T D, Stopar D.Bacteriophage latent period evolution as a response to resource availability[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 233-4 241.
doi: 10.1128/AEM.67.9.4233-4241.2001
URL
pmid: 93152
|
[95] |
Apple J K, del Giorgio P A. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary[J]. ISME Journal, 2007, 1(8): 729-742.
doi: 10.1038/ismej.2007.86
URL
pmid: 18059496
|
[96] |
Noble R T, Fuhrman J A.Virus decay and its causes in coastal waters[J]. Applied and Environmental Microbiology, 1997, 63(1): 77-83.
doi: 10.1016/S0065-2164(08)70266-1
URL
pmid: 16535501
|
[97] |
Motegi C, Nagata T.Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific[J]. Aquatic Microbial Ecology, 2007, 48(1): 27-34.
doi: 10.3354/ame048027
URL
|
[98] |
Rochelle-Newall E, Delille B, Frankignoulle M, et al. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels[J]. Marine Ecology Progress Series, 2004, 272: 25-31.
doi: 10.3354/meps272025
URL
|
[99] |
Carreira C, Heldal M, Bratbak G.Effect of increased pCO2 on phytoplankton-virus interactions[J]. Biogeochemistry, 2012, 114(1/3): 391-397.
doi: 10.1007/s10533-011-9692-x
URL
|
[100] |
Maat D S, Crawfurd K J, Timmermans K R, et al. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact[J]. Applied and Environmental Microbiology, 2014, 80(22): 3 119-3 127.
doi: 10.1128/AEM.03639-13
URL
pmid: 4018922
|
[101] |
Larsen J B, Larsen A, Thyrhaug R, et al. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 level[J]. Biogeosciences, 2008, 5(2): 523-533.
doi: 10.5194/bg-5-523-2008
URL
|
[102] |
Yang Yunlan, Cai Lanlan, Zhang Rui.Effects of global climate change on the ecological characteristics and biogeochemical significance of marine viruses—A review[J]. Acta Microbiologica Sinica, 2015, 55(9): 1 097-1 104.
|
|
[杨芸兰, 蔡兰兰, 张锐. 气候变化对海洋病毒生态特性及其生物地球化学效应的影响[J]. 微生物学报, 2015, 55(9): 1 097-1 104.]
|