地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 225 -235. doi: 10.11867/j.issn.1001-8166.2018.03.0225

综述与评述    下一篇

病毒对海洋细菌代谢的影响及其生物地球化学效应
卢龙飞 1( ), 张锐 1, 徐杰 2, 焦念志 1, *( )   
  1. 1.厦门大学海洋与地球学院, 近海海洋环境科学国家重点实验室, 海洋微型生物与地球圈层研究所, 福建 厦门 361102
    2.中国科学院南海海洋研究所, 广东 广州 510301
  • 收稿日期:2017-11-13 修回日期:2018-02-01 出版日期:2018-03-20
  • 通讯作者: 焦念志 E-mail:lulongfei567@163.com;jiao@xmu.edu.cn
  • 基金资助:
    *国家自然科学基金优秀青年科学基金项目“海洋病毒生态学”(编号:41522603);国家自然科学基金面上项目“溶源性噬菌体对海洋细菌生理生态特性的影响”(编号:31570172)资助.

Influence of Virus upon the Marine Bacterial Metabolism and Its Biogeochemical Effects

Longfei Lu 1( ), Rui Zhang 1, Jie Xu 2, Nianzhi Jiao 1, *( )   

  1. 1.Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
    2.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2017-11-13 Revised:2018-02-01 Online:2018-03-20 Published:2018-05-02
  • Contact: Nianzhi Jiao E-mail:lulongfei567@163.com;jiao@xmu.edu.cn
  • About author:

    First author:Lu Longfei(1987-), male, Rongcheng City, Shandong Province, Ph.D student. Research areas include marine viral ecology.E-mail:lulongfei567@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Marine viral ecology” (No.41522603) and “Effects of lysogenic phage on ecophysiological characteristics of marine bacteria” (No.31570172).

病毒是海洋生态系统中丰度最高的生命形式,其中超过90%属于浮游细菌(细菌和古菌)病毒,是海洋生态系统的重要参与者和海洋生物地球化学循环的重要驱动力。作为海洋浮游细菌主要的致死因子之一,病毒通过裂解宿主释放出大量的有机物和营养盐,调控宿主群落的代谢行为,进而影响生物地球化学循环。同时,伴随侵染的发生,病毒挟持宿主细胞的代谢系统完成自身的生命周期,从而改变宿主胞内的代谢途径和代谢产物。概述了病毒在个体层面和群落层面对海洋浮游细菌代谢的影响,及其对海洋元素循环的作用,评估了气候变化、环境因子对病毒调控细菌代谢的潜在影响,有助于人们对微生物参与的海洋生物地球化学循环的全面认识。

Viruses are by far the most abundant entities in marine environments, and are mainly phages that infect bacteria and archaea, which also are a significant component of marine ecosystem and a major force behind marine biogeochemical cycles. As a major source of mortality, viral lysis can release highly labile cellular components, both organic matters and inorganic nutrients, regulating the metabolism of its hosts and influencing the biogeochemical cycles. During infection, viruses could hijack the metabolic system of hosts for its own propagation, thereby changing the metabolism and metabolites of host cells. This paper summarized the effects of viruses on the metabolism of marine bacterioplankton at both the cellular and community level, and its influence on the cycling of ocean elements. Then, the potential impact of environmental factors was assessed on the influence of viruses upon bacterial metabolism. This paper will contribute to a comprehensive understanding of the role of microbes within marine biogeochemical cycles.

中图分类号: 

表1 涉及海洋病毒对细菌群落代谢影响的已发表研究总结
Table 1 Summary of published studies used to investigate the effects of marine virus upon bacterial community metabolism
[1] Suttle C A.Viruses in the sea[J]. Nature, 2005, 437(7 057): 356.
doi: 10.1038/nature04160     URL    
[2] Suttle C A.Marine viruses—Major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812.
doi: 10.1038/nrmicro1750     URL     pmid: 17853907
[3] Jiao Nianzhi.Marine Microbial Ecology[M]. Beijing: Science Press, 2006.
[焦念志. 海洋微型生物生态学[M]. 北京: 科学出版社, 2006.]
[4] Wommack K E, Colwell R R.Virioplankton: Viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 69-114.
doi: 10.1128/MMBR.64.1.69-114.2000     URL    
[5] Fuhrman J A, Suttle C A.Viruses in marine planktonic systems[J]. Oceanography, 1993, 6(2): 51-63.
doi: 10.5670/oceanog.1993.14     URL    
[6] Brussaard C P D, Wilhelm S W, Thingstad F, et al. Global-scale processes with a nanoscale drive: The role of marine viruses[J]. ISME Journal, 2008, 2(6): 575-578.
doi: 10.1038/ismej.2008.31     URL    
[7] Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 1983, 10: 257-263.
doi: 10.3354/meps010257     URL    
[8] Azam F.Microbial control of oceanic carbon flux: The plot thickens[J]. Science, 1998, 280(5 364): 694-696.
doi: 10.1126/science.280.5364.694     URL    
[9] Ren Chengzhe, Yuan Huamao, Song Jinming, et al. Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017, 32(9): 959-971.
[任成喆, 袁华茂, 宋金明, 等. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.]
doi: 10.11867/j.issn.1001-8166.2017.09.0959     URL    
[10] Smith E M, Prairie Y T.Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability[J]. Limnology and Oceanography, 2004, 49(1): 137-147.
doi: 10.4319/lo.2004.49.1.0137     URL    
[11] Kritzberg E S, Cole J J, Pace M M, et al. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial inputs[J]. Aquatic Microbial Ecology, 2005, 38(2): 103-111.
doi: 10.3354/ame038103     URL    
[12] Maurice C F, Bouvier T, Comte J, et al. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes[J]. Environmental Microbiology, 2010, 12(3): 628-641.
doi: 10.1111/j.1462-2920.2009.02103.x     URL     pmid: 20002137
[13] Cole J J, Findlay S, Pace M L.Bacterial production in fresh and saltwater ecosystems: A cross-system overview[J]. Marine Ecology Progress Series, 1988, 43: 1-10.
doi: 10.3354/meps043001     URL    
[14] Ducklow H W, Carlson C A.Oceanic bacterial production[M]∥Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 1992: 113-181.
[15] del Giorgio P A, Cole J J. Bacterial growth efficiency in natural aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1998, 29: 503-541.
doi: 10.1146/annurev.ecolsys.29.1.503     URL    
[16] Biddanda B, Ogdahl M, Cotner J.Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters[J]. Limnology and Oceanography, 2001, 46(3): 730-739.
doi: 10.4319/lo.2001.46.3.0730     URL    
[17] Carlson C A, Giorgio P D, Herndl G J.Microbes and the dissipation of energy and respiration: From cells to ecosystems[J]. Oceanography, 2007, 20(2): 89-100.
doi: 10.5670/oceanog.2007.52     URL    
[18] Kirchman D L.Processes in Microbial Ecology[M]. Oxford: Oxford University Press, 2012.
[19] Hansell D A, Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter Second edition[M]. London: Academic Press, 2014.
[20] Mann N, Cook A, Millard A, et al. Marine ecosystems: Bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6 950): 741.
doi: 10.1038/424741a     URL     pmid: 12917674
[21] Sharon I, Battchikova N, Aro E, et al. Comparative metagenomics of microbial traits within oceanic viral communities[J]. ISME Journal, 2011, 5(7): 1 178-1 190.
doi: 10.1038/ismej.2011.2     URL     pmid: 21307954
[22] Thompson L, Zeng Q, Kelly L, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): E757-E764.
doi: 10.1073/pnas.1102164108     URL    
[23] Anantharaman K, Duhaime M, Breier J, et al. Sulfur oxidation genes in diverse deep-sea viruses[J]. Science, 2014, 344(6 185): 757-760.
doi: 10.1126/science.1252229     URL     pmid: 24789974
[24] Hagay E, Mandel-Gutfreund Y, Béj O.Comparative metagenomics analyses reveal viral-induced shifts of host metabolism towards nucleotide bio-sysnthesis[J]. Microbiome, 2014, 2(1): 9.
doi: 10.1186/2049-2618-2-9     URL     pmid: 24666644
[25] Jover L F, Effler T C, Buchan A, et al. The elemental composition of virus particles: Implications for marine biogeochemical cycles[J]. Nature Reviews Microbiology, 2014, 12(7): 519-528.
doi: 10.1038/nrmicro3289     URL     pmid: 24931044
[26] Zhang R, Wei W, Cai L.The fate and biogeochemical cycling of viral elements[J]. Nature Reviews Microbiology, 2014, 12: 850-851.DOI:10.1038/nrmicro3384.
doi: 10.1038/nrmicro3384     URL     pmid: 25396723
[27] Middelboe M.Bacterial growth rate and marine virus-host dynamics[J]. Microbial Ecology, 2000, 40(2): 114-124.
[28] Philosof A, Battchikova N, Aro E, et al. Marine cyanophages: Tinkering with the electron transport chain[J]. ISME Journal, 2011, 5(10): 1 568-1 570.
doi: 10.1038/ismej.2011.43     URL     pmid: 21509045
[29] Dwivedi B, Xue B, Lundin D, et al. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes[J]. BMC Evolutionary Biology, 2013, 13: 33.
doi: 10.1186/1471-2148-13-33     URL     pmid: 3653736
[30] Zeng Q, Chisholm S W.Marine viruses exploit their host’s two-component regulatory system in response to resource limitation[J]. Current Biology, 2012, 22(2): 124-128.
doi: 10.1016/j.cub.2011.11.055     URL     pmid: 22244998
[31] Williamson S, Rusch D, Yooseph S, ,et al. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE, 2008, 3(1): e1 456.
[32] Crummett L T, Puxty R J, Weihe C, et al. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses[J]. Virology, 2016, 499: 219-229.
doi: 10.1016/j.virol.2016.09.016     URL     pmid: 27693926
[33] Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature, 2005, 438(7 064): 86-89.
doi: 10.1038/nature04111     URL     pmid: 16222247
[34] Sharon I, Tzahor S, Williamson S, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment[J]. ISME Journal, 2007, 1(6): 492-501.
doi: 10.1038/ismej.2007.67     URL     pmid: 18043651
[35] Mann N H, Clokie M R J, Millard A, et al. The genome of S-PM2, a ‘photosynthetic’ T4-type bacteriophage that infects marine Synechococcus[J]. Journal of Bacteriology, 2005, 187(9): 3 188-3 200.
doi: 10.1128/JB.187.9.3188-3200.2005     URL     pmid: 15838046
[36] Ankrah N Y D, May A L, Middleton J L, et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition[J]. ISME Journal, 2014, 8(5): 1 089-1 100.
doi: 10.1038/ismej.2013.216     URL     pmid: 3996693
[37] De Smet J, Zimmermann M, Kogadeeva M, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J]. ISME Journal, 2016, 10(8): 1 823-1 835.
doi: 10.1038/ismej.2016.3     URL     pmid: 26882266
[38] Azam F, Malfatti F.Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 2007, 5(10): 782-791.
doi: 10.1038/nrmicro1747     URL    
[39] Fuhrman J A.Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6 736): 541-548.
doi: 10.1038/21119     URL    
[40] Weitz J S, Stock C A, Wilhelm S W, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes[J]. ISME Journal, 2015, 9(6): 1 352-1 364.
doi: 10.1038/ismej.2014.220     URL     pmid: 25635642
[41] Bonilla-Findji O, Malits A, Lefèvre D, et al. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 2008, 55(5): 790-800.
doi: 10.1016/j.dsr2.2007.12.004     URL    
[42] Motegi C, Nagata T, Miki T, et al. Viral control of bacterial growth efficiency in marine pelagic environments[J]. Limnology and Oceanography, 2009, 54(6): 1 901-1 910.
doi: 10.4319/lo.2009.54.6.1901     URL    
[43] Xu J, Jing H, Sun M, et al. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1 573-1 583.
doi: 10.1002/2013JG002296     URL    
[44] Middelboe M, Jørgensen N O G, Kroer N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton[J]. Applied and Environmental Microbiology, 1996, 62(6): 1 991-1 997.
[45] Liu H, Yuan X, Xu J, et al. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters[J]. Scientific Reports, 2015, 5: 14 217.
doi: 10.1038/srep14217     URL    
[46] Noble R T, Middelboe M, Fuhrman J A.The effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton[J]. Aquatic Microbial Ecology, 1999, 18(1): 1-13.
doi: 10.3354/ame018001     URL    
[47] Middelboe M, Lyck P G.Regeneration of dissolved organic matter by viral lysis in marine microbial communities[J]. Aquatic Microbial Ecology, 2002, 27(2): 187-194.
doi: 10.3354/ame027187     URL    
[48] Eissler Y, Quiñones R A.The effect of viral concentrate addition on the respiration rate of Chaetoceros gracilis cultures and microplankton from a shallow bay (Coliumo, Chile)[J]. Journal of Plankton Research, 2003, 25(8): 927-938.
doi: 10.1093/plankt/25.8.927     URL    
[49] Malits A, Weinbauer M G.Effect of turbulence and viruses on prokaryotic cell size, production and diversity[J]. Aquatic Microbial Ecology, 2009, 54(3): 243-254.
doi: 10.1016/j.sysconle.2005.12.002     URL    
[50] Xu J, Sun M, Shi Z, et al. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: Implications for CO2 emission[J]. PloS ONE, 2014, 9(7): e102490.
doi: 10.1371/journal.pone.0102490     URL     pmid: 25036641
[51] Bratbak G, Heldal M, Norland S, et al. Viruses as partners in spring bloom microbial trophodynamics[J]. Applied and Environmental Microbiology, 1990, 56(5): 1 400-1 405.
doi: 10.1007/BF01200945     URL     pmid: 16348190
[52] Pradeep Ram A S, Colombet J, Perriere F, et al. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments[J]. FEMS Microbial Ecology, 2015, 91(2): 1-12.
doi: 10.1093/femsec/fiv002     URL     pmid: 25764557
[53] Pradeep Ram A S P, Colombet J, Perriere F, et al. Viral regulation of prokaryotic carbon metabolism in a hypereutrophic freshwater reservoir ecosystem (Villerest, France)[J]. Frontiers in Microbiology, 2016, 7: 81.
doi: 10.3389/fmicb.2016.00081     URL     pmid: 4746248
[54] Pradeep Ram A S, Palesse S, Colombet J, et al. Variable viral and grazer control of prokaryotic growth efficiency in temperate freshwater lakes (French Massif Central)[J]. Microbial Ecology, 2013, 66(4): 906-916.
doi: 10.1007/s00248-013-0289-x     URL     pmid: 24061344
[55] Wilhelm S W, Suttle C A.Viruses and nutrient cycles in the sea[J]. Bioscience, 1999, 49(10): 781-788.
doi: 10.2307/1313569     URL    
[56] Weinbauer M G.Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181.
doi: 10.1016/j.femsre.2003.08.001     URL    
[57] Hansell D A.Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Ecology and Systematics, 2013, 5: 421-445.
doi: 10.1146/annurev-marine-120710-100757     URL     pmid: 22881353
[58] Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: New insights stimulated by a controversy[J]. Oceanography, 2009, 22(4): 52-61.
doi: 10.5670/oceanog.2009.109     URL    
[59] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5 682): 367-371.
doi: 10.1126/science.1097403     URL     pmid: 15256665
[60] Volk T, Hoffert M I.Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present. American Geophysical Union,1985.DOI:10.1029/GM032.
[61] Passow U, Carlson C A.The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271.
doi: 10.3354/meps09985     URL    
[62] Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
doi: 10.1038/nrmicro2386     URL     pmid: 20601964
[63] Jiao Nianzhi, Li Chao, Wang Xiaoxue.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
[焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.]
doi: 10.11867/j.issn.1001-8166.2016.07.0668     URL    
[64] Weinbauer M G, Rassoulzadegan F.Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1): 1-11.
doi: 10.1046/j.1462-2920.2003.00539.x     URL     pmid: 14686936
[65] Rivkin R B, Legendre L.Biogenic carbon cycling in the upper ocean: Effects of microbial respiration[J]. Science, 2001, 291(5 512): 2 398-2 400.
doi: 10.1126/science.291.5512.2398     URL     pmid: 11264533
[66] Shelford E J, Middelboe M, Møller E F, et al. Virus-driven nitrogen cycling enhances phytoplankton growth[J]. Aquatic Microbial Ecology, 2012, 66(1): 41-46.
doi: 10.3354/ame01553     URL    
[67] Middelboe M, Jørgensen N O G. Viral lysis of bacteria: An important source of dissolved amino acids and cell wall compounds[J]. Journal of the Marine Biological Association of the United Kingdom, 2006, 86(3): 605-612.
doi: 10.1017/S0025315406013518     URL    
[68] Goldman J C, Caron D A, Dennett M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio[J]. Limnology and Oceanography, 1987, 32(6): 1 239-1 252.
doi: 10.4319/lo.1987.32.6.1239     URL    
[69] Poorvin L, Rinta-Kanto J M, Hutchins D A, et al. Viral release of iron and its bioavailability to marine plankton[J]. Limnology and Oceanography, 2004, 49(5): 1 734-1 741.
doi: 10.4319/lo.2004.49.5.1734     URL    
[70] Mioni C E, Poorvin L, Wilhelm S W.Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: Characterization using an Fe-specific bioreporter[J]. Aquatic Microbial Ecology, 2005, 41(3): 233-245.
doi: 10.3354/ame041233     URL    
[71] Tomaru Y, Tanabe H, Yamanaka S, et al. Effects of temperature and light on stability of microalgal viruses, HaV, HcV, and HcRNAV[J]. Plankton Biology and Ecology, 2005, 52(1): 1-6.
URL    
[72] Matteson A R, Loar S N, Pickmere S, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand[J]. FEMS Microbiology Ecology, 2012, 79(3): 709-719.
doi: 10.1111/j.1574-6941.2011.01251.x     URL     pmid: 22092871
[73] Paul J H.Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas?[J]. ISME Journal, 2008, 2(6): 579-589.
doi: 10.1038/ismej.2008.35     URL     pmid: 18521076
[74] Delisle A L, Levin R E.Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens[J]. Antonie Van Leeuwenhoek, 1972, 38(1): 1-8.
doi: 10.1007/BF02328071     URL     pmid: 4537085
[75] Mojica K D A, Brussaard C P D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments[J]. FEMS Microbiology Ecology, 2014, 89(3): 495-515.
doi: 10.1111/1574-6941.12343     URL     pmid: 24754794
[76] White P A, Kalff J, Rasmussen J B, et al. The effect of temperature and algal biomass on bacterial production and specific growth-rate in fresh-water and marine habitats[J]. Microbial Ecology, 1991, 21(1): 99-118.
doi: 10.1007/BF02539147     URL     pmid: 24194204
[77] Wiebe W J, Sheldon W M, Pomeroy L R.Bacterial-growth in the cold-evidence for an enhanced substrate requirement[J]. Applied and Environmental Microbiology, 1992, 58(1): 359-364.
doi: 10.1016/S0065-2164(08)70256-9     URL     pmid: 195215
[78] Suttle C A, Chen F.Mechanisms and rates of decay of marine viruses in seawater[J]. Applied and Environmental Microbiology, 1992, 58(11): 3 721-3 729.
doi: 10.1002/yea.320081212     URL     pmid: 183166
[79] Weinbauer M G, Suttle C A.Lysogeny and prophage induction in coastal and offshore bacterial communities[J]. Aquatic Microbial Ecology, 1999, 18(3): 217-225.
doi: 10.3354/ame018217     URL    
[80] Kellogg C A, Paul J H.Degree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages[J]. Aquatic Microbial Ecology, 2002, 27(1): 13-20.
doi: 10.3354/ame027013     URL    
[81] Traving S J, Clokie M R J, Middelboe M. Increased acidification has profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses[J]. FEMS Microbiology Ecology, 2014, 87(1): 133-141.
doi: 10.1111/1574-6941.12199     URL     pmid: 24003947
[82] Jacquet S, Heldal M, Iglesias-Rodriguez D, et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection[J]. Aquatic Microbial Ecology, 2002, 27(2): 111-124.
doi: 10.3354/ame027111     URL    
[83] Clokie M R J, Mann N H. Marine cyanophages and light[J]. Environmental Microbiology, 2006, 8(12): 2 074-2 082.
doi: 10.1111/j.1462-2920.2006.01171.x     URL     pmid: 17107549
[84] Wilhelm S W, Jeffrey W H, Dean A L, et al. UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean[J]. Aquatic Microbial Ecology, 2003, 31(1): 1-8.
doi: 10.3354/ame031001     URL    
[85] Furuta M, Schrader J O, Schrader H S, et al. Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV[J]. Applied and Environmental Microbiology, 1997, 63(4): 1 551-1 556.
doi: 10.1089/oli.1.1997.7.125     URL     pmid: 168447
[86] Orgata H, Ray J, Toyoda K, et al. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment[J]. ISME Journal, 2011, 5(7): 1 143-1 151.
doi: 10.1038/ismej.2010.210     URL     pmid: 21248859
[87] Santini S, Jeudy S, Bartoli J, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10 800-10 805.
doi: 10.1073/pnas.1303251110     URL    
[88] Cordova A, Deserno M, Gelbart W M, et al. Osmotic shock and the strength of viral capsids[J]. Biophysical Journal, 2003, 85(1): 70-74.
doi: 10.1016/S0006-3495(03)74455-5     URL    
[89] Kukkaro P, Bamford D H.Virus-host interactions in environments with a wide range of ionic strengths[J]. Environmental Microbiology Reports, 2009, 1(1): 71-77.
doi: 10.1111/j.1758-2229.2008.00007.x     URL     pmid: 23765723
[90] Zachary A.Physiology and ecology of bacteriophages of the marine bacterium Beneckea natriegens: Salinity[J]. Applied and Environmental Microbiology, 1976, 31(3): 415-422.
URL     pmid: 938035
[91] Williamson S J, Paul J H.Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage-host system[J]. Microbial Ecology, 2006, 52(2): 217-225.
doi: 10.1007/s00248-006-9113-1     URL     pmid: 16897298
[92] Wilson W H, Carr N G, Mann N H.The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803[J]. Journal of Phycology, 1996, 32(4): 506-516.
doi: 10.1111/j.0022-3646.1996.00506.x     URL    
[93] Wilson W H, Turner S, Mann N H.Population dynamics of phytoplankton and viruses in a phosphate-limited mesocosm and their effect on DMSP and DMS production[J]. Estuarine Coastal and Shelf Science, 1998, 46(2): 49-59.
doi: 10.1006/ecss.1998.0333     URL    
[94] Abedon S T, Herschler T D, Stopar D.Bacteriophage latent period evolution as a response to resource availability[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 233-4 241.
doi: 10.1128/AEM.67.9.4233-4241.2001     URL     pmid: 93152
[95] Apple J K, del Giorgio P A. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary[J]. ISME Journal, 2007, 1(8): 729-742.
doi: 10.1038/ismej.2007.86     URL     pmid: 18059496
[96] Noble R T, Fuhrman J A.Virus decay and its causes in coastal waters[J]. Applied and Environmental Microbiology, 1997, 63(1): 77-83.
doi: 10.1016/S0065-2164(08)70266-1     URL     pmid: 16535501
[97] Motegi C, Nagata T.Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific[J]. Aquatic Microbial Ecology, 2007, 48(1): 27-34.
doi: 10.3354/ame048027     URL    
[98] Rochelle-Newall E, Delille B, Frankignoulle M, et al. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels[J]. Marine Ecology Progress Series, 2004, 272: 25-31.
doi: 10.3354/meps272025     URL    
[99] Carreira C, Heldal M, Bratbak G.Effect of increased pCO2 on phytoplankton-virus interactions[J]. Biogeochemistry, 2012, 114(1/3): 391-397.
doi: 10.1007/s10533-011-9692-x     URL    
[100] Maat D S, Crawfurd K J, Timmermans K R, et al. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact[J]. Applied and Environmental Microbiology, 2014, 80(22): 3 119-3 127.
doi: 10.1128/AEM.03639-13     URL     pmid: 4018922
[101] Larsen J B, Larsen A, Thyrhaug R, et al. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 level[J]. Biogeosciences, 2008, 5(2): 523-533.
doi: 10.5194/bg-5-523-2008     URL    
[102] Yang Yunlan, Cai Lanlan, Zhang Rui.Effects of global climate change on the ecological characteristics and biogeochemical significance of marine viruses—A review[J]. Acta Microbiologica Sinica, 2015, 55(9): 1 097-1 104.
[杨芸兰, 蔡兰兰, 张锐. 气候变化对海洋病毒生态特性及其生物地球化学效应的影响[J]. 微生物学报, 2015, 55(9): 1 097-1 104.]
[1] 王丽玲,林景星,胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
[2] 王天送. 社会代谢多尺度综合评估(MSIASM)的基本理论与实践[J]. 地球科学进展, 2008, 23(1): 63-70.
[3] 龙爱华;张志强;苏志勇. 生态足迹评介及国际研究前沿[J]. 地球科学进展, 2004, 19(6): 971-981.
阅读次数
全文


摘要