地球科学进展 ›› 2013, Vol. 28 ›› Issue (7): 783 -793. doi: 10.11867/j.issn.1001-8166.2013.07.0783

综述与评述 上一篇    下一篇

东海海—气界面二氧化碳通量的季节变化与控制因素研究进展
曲宝晓 1,2, 宋金明 1*, 袁华茂 1, 李学刚 1, 李 宁 1, 段丽琴 1,马清霞 1,2, 陈 鑫 1,2   
  1. 1.中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛 266071; 2.中国科学院大学,北京 100049
  • 收稿日期:2013-01-27 修回日期:2013-04-18 出版日期:2013-07-10
  • 通讯作者: 宋金明(1964-),男,河北枣强人,研究员,主要从事环境海洋学和海洋生物地球化学研究 E-mail:jmsong@qdio.ac.cn
  • 基金资助:

    中国科学院创新先导性项目“黄东海典型海域海气界面碳通量”(编号:XDA05030402);国家重点基础研究发展计划项目“全球生物地球化学模型及其元素循环过程”(编号:2010CB951802)资助.

Advances of Seasonal Variations and Controlling Factors of the Air-Sea CO 2 Flux in the East China Sea

Qu Baoxiao 1,2 , Song Jinming 1, Yuan Huamao 1, Li Xuegang 1, Li Ning 1, Duan Liqin 1, Ma Qingxia 1,2, Chen Xin 1,2   

  1. 1.Key Laboratory of Ecology and Environment, Institute of Oceanography, Chinese Academy of Sciences,Qingdao 266071, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-01-27 Revised:2013-04-18 Online:2013-07-10 Published:2013-07-10

通过对东海海—气界面二氧化碳(CO2)交换有关研究的总结,剖析了东海表层海水CO2分压(pCO2)的区域分布特征,探讨了海—气界面CO2通量(FCO2)的季节变化规律,诠释了影响海—气界面CO2转移的主要因素。结果表明,东海表层海水pCO2的区域分布具有明显的季节变化,可将其分为冬季、夏季、过渡季节(春季、秋季)3个时段。冬季西部近岸海域由于水体垂直交换强烈,造成表层水体pCO2较高,而中、东部陆架海域由于浮游生物的光合作用使得pCO2较低。夏季近岸河口海域由于陆源输入的影响导致pCO2较高,中、东部陆架海域受温跃层、长江冲淡水、浮游植物的综合作用pCO2较低。春季、秋季为过渡时段,表层海水pCO2分布变化剧烈,受控因素较为复杂。东海全年表现为大气CO2的净汇,其中冬、春、夏为碳汇,其海—气界面FCO2分别为(-6.68±6.93),(-4.94±0.80),(-3.67±1.09)  mmol/(m2·d)。秋季表现为碳源,通量约为(1.50±8.37) mmol/(m2·d)。东海全年平均通量约为-3.16 mmol/(m2·d),共可吸收CO2约为6.92×106 t C/a。不同季节海—气界面FCO2的年际变化凸显了人为因素的影响,近海富营养化加剧,三峡工程的运行都可能是造成东海冬季碳汇量减少、秋季碳源/汇格局转变的原因。

Spatial variations of the CO2 partial pressure (pCO2) in surface water, seasonal variations of the airsea CO2 exchange flux (FCO2), and major controlling factors of the CO2 transfer were reviewed based on the summary of CO2 exchange in the East China Sea (ECS). Spatial distribution of  pCO2 in the ECS underwent three different phases: the winter phase, the summer phase, and the transition phase (spring and autumn). The western coastal area acted as CO2 source on account of vertical convection during the winter phase, whereas the shelf region acted as CO2sink because of the phytoplankton activity. Estuary in the shallower shelf possessed high pCO2 for terrigenous input in the summer phase while the major shelf had low pCO2 under the comprehensive function of thermocline, Changjiang diluted water, and photosynthesis. During the transition phase in spring and autumn, the distribution of pCO2 varied dramatically and got complex controlling factors. The winter, spring, and summer could absorb atmospheric CO2with the flux for (-6.68±6.93), (-4.94±0.80), (-3.67±1.09) mmol/(m2·d), respectively, whereas the autumn could release CO2with the flux for (2.64±7.06)mmol/(m2·d). The ECS serves as a carbon sink with the annual air-sea CO2 flux for -3.16 mmol/(m2·d), which equals to 6.92×106t C/a. Anthropogenic activities and the aggregative of eutrophication were the principal reason for the annual variation of CO2 flux probably.

中图分类号: 

[1] Cai W J, Dai M H , Wang Y C. Air-sea exchange of carbon dioxide in ocean margins: A province based synthesis[J].Geophysical Research Letters, 2006, 33(12): L12603, doi: 10.1029/2006GL026219.

[2] Borges A V, Delille B, Frankignoulle M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts[J].Geophysical Research Letters, 2005, 32(14),doi:10.1029/2005GL023053.

[3] Friederich G E, Ledesma J, Ulloa O,et al. Air-sea carbon dioxide fluxes in the coastal southeastern tropical Pacific[J]. Progress in Oceanography, 2008, 79(2/4): 156-166.

[4] Tsunogai S, Watanabe S, Sato T. Is there a “continental shelf pump” for the absorption of atmospheric CO2?[J].Tellus, 1999, 51(B): 701-712.

[5] Kempe S, Pegler K. Sinks and sources of CO2 in coastal seas: The North Sea[J].Tellus,1991, 43(2): 224-235.

[6] Boehme S E, Sabine C L, Reimers C E. CO2 fluxes from a coastal transect: A time-series approach[J].Marine Chemistry, 1998, 63(1/2): 49-67.

[7] Hales B, Takahashi T, Bandstra L. Atmospheric CO2 uptake by a coastal upwelling system[J].Global Biogeochemistry Cycles, 2005, 19: GB1009, doi:10.1029/2004GB002295.

[8] Dai M H, Lu Z M, Zhai W D,et al. Diurnal variations of surface seawater pCO2 in contrasting coastal environments[J].Limnology and Oceanography, 2009, 54(3): 735-745. 

[9] Tsunogai S, Watanabe S, Nakamura J,et al. A preliminary study of carbon system in the East China Sea[J].Journal of Oceanography, 1997, 53(1): 9-17.

[10] Zhang Yuanhui, Huang Ziqiang, Ma Liming,et al. Carbon dioxide in surface water and its flux in East China Sea[J].Journal of Oceanography in Taiwan Strait, 1997,16(1):37-42.[张远辉, 黄自强, 马黎明, 等. 东海表层二氧化碳及其通量[J]. 台湾海峡, 1997, 16(1): 37-42.]

[11] Wang S L, Chen C T A, Hong G H,et al. Carbon dioxide and related parameters in the East China Sea[J].Continental Shelf Research, 2000, 20(4/5): 525-544.

[12] Peng T H, Hung J J, Wanninkhof R,et al. Carbon budget in the East China Sea in spring[J].Tellus, 1999, 51B(2): 531-540.

[13] Zhang Longjun, Wang Binyu, Zhang Jing.pCO2 of the surface water in East China Sea in summer and winter[J].Journal of Ocean University of Qingdao, 1999,(Suppl.):149-153.[张龙军, 王彬宇, 张经. 东海冬、夏两季表层海水的二氧化碳分压[J].青岛海洋大学学报, 1999, (增刊): 149-153.]

[14] Tan Yan, Zhang Longjun, Wang Fan,et al. Summer surface water pCO2 and CO2 flux at air-sea interface in western part of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(3): 239-244.[谭燕, 张龙军, 王凡, 等. 夏季东海西部表层海水中的pCO2及海—气界面通量[J]. 海洋与湖沼, 2004, 35(3): 239-244.]

[15] Gao X L, Song J M, Li X G,et al. pCO2 and carbon fluxes across sea-air interface in the Changjiang Estuary and Hangzhou Bay[J].Chinese Journal of Oceanology and Limnology, 2008, 26(3): 289-295.

[16] Zhai W D, Dai M H. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) estuary, East China Sea[J].Marine Chemistry, 2009, 117(1/4): 2-10.

[17] Shim J H, Kim D, Kang Y C, et al. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea[J].Continental Shelf Research, 2007, 27(20): 2 623-2 636.

[18] Chou W C, Gong G C, Sheu D D,et al. Reconciling the paradox that the heterotrophic waters of the East China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications[J]. Geophysical Research Letters, 2009, 36: L15697, doi:10.1029/2009GL038475.

[19] Pierrot D E, Lewis E, Wallace D W R. MS Excel Program Developed for CO2 System Calculations[Z]. Oak Ridge, Oak Ridge National Laboratory,2006,doi:10.334/CDZAC10ty.CO2SYS_XLS_CDLAC105a.

[20] Wanninkhof R, Thoning K. Measurement of fugacity of CO2 in surface water using continuous and discrete sampling methods[J].Marine Chemistry, 1993, 44(2/4): 189-204.

[21] Feely R A, Wanninkhof R, Milburn H B,et al. A new automated underway system for making high precisionp CO2 measurements onboard research ships[J].Analytica Chimica Acta, 1998, 377(2/3): 185-191.

[22] Chou W C, Gong G C, Tseng C M,et al. The carbonate system in the East China Sea in winter[J].Marine Chemistry, 2010, 123(1/4): 44-55.

[23] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J].Journal of Geophysical Research, 1992, 97(C5): 7 373-7 382.

[24] GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project-Carbon Dioxide[R].NOAA ESRL, Boulder, Colorado, 2011.

[25] [JP2]Miyake Y, Sugimura Y. Carbon dioxide in the surface water and the atmosphere in the Pacific, the Indian and the Antarctic Ocean areas[J].Research Oceanography Works Japan, 1969,10: 23-28.[JP]

[26] Goyet C, Beauverger C. Distribition of carbon dioxide partial pressure in the surface water of the Southwest Indian Ocean[J].Tellus, 1991, 43(1): 1-11.

[27] Mehrbach C, Culberson C H, Hawley J E,et al. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure[J].Limnology and Oceanography, 1973, 18(6): 897-907.

[28] [JP2]Weiss R F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas[J].Marine Chemistry, 1974, 2(3): 203-215.[JP]

[29] Zhu Lianlei. Dissolved Inorganic Carbon and Air-Sea Carbon Flux in the Mid-West of the East China Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.[朱连磊. 东海中西部海域水体无机碳与海—气界面碳通量[D]. 青岛:中国科学院海洋研究所, 2011.]

[30] Liu Jiandong. Study on Impacting Factors of pCO2 in the East China Sea in Winter[D]. Qingdao: Ocean University of China, 2008.[刘建栋.冬季东中国海表层pCO2的分布特征及控制因素[D]. 青岛:中国海洋大学, 2008.]

[31] Hu Yubin, Liu Chunying, Yang Guipeng,et al. The horizontal distributions of CO2 system parameters and sea-air flux in the South  Yellow Sea and East China Sea[J].Periodical of Ocean University of China, 2010, 40(2):73-78.[胡玉斌, 刘春颖, 杨桂朋, 等. 秋季东海和南黄海表层海水CO2体系各参数分布及海—气界面通量[J]. 中国海洋大学学报, 2010, 40(2):73-78.]

[32] Gong G C, Chen Y L, Lee L,et al. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics[J].Continental Shelf Research, 1996, 16(12): 1 561-1 590.

[33] Tan Yan. Study on the CO2 Flux at the Estuary of Yangtze and Huanghe and pCO2 Estimate Model of East China Sea[D]. Qingdao: Ocean University of China, 2004.[谭燕. 长江口、黄河口临近海域(FCO2)及东海pCO2估测模型的讨论[D]. 青岛: 中国海洋大学, 2004.]

[34] Zhang Longjun. The Study on the CO2 Flux at the Sea-Atmosphere Interface over the East China Sea[D]. Qingdao: Ocean University of China, 2003.[张龙军. 东海海—气界面(FCO2)研究[D]. 青岛:中国海洋大学, 2003.]

[35] Chou W C, Gong G C, Sheu D,et al. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007[J].Journal of Geophysical Research, 2009, 114: C07026.

[36] Nemoto K, Midorikawa T, Wada A,et al. Continuous observations of atmospheric and oceanic CO2 using a moored buoy in the East China Sea: Variations during the passage of typhoons[J].Deep-Sea ResearchⅡ, 2009, 56(8/10): 542-553.

[37] Mellor G L, Durbin P A. The structure and dynamics of the ocean surface mixed layer[J].Jouranl of Physical Oceanography, 1975, 5(4): 718-728.

[38] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J].Reviews of Geophysical, 1982, 20(4): 851-879.

[39] Hu Dunxin. Study on Chinese ocean flux[J].Advances in Earth Science, 1996, 11(2): 227-229.[胡敦欣. 我国的海洋通量研究[J]. 地球科学进展, 1996, 11(2): 227-229.]

[40] Song Jinming, Xu Yongfu, Hu Weiping,et al. Biochemistry of Carbon in China Seas and Lakes[M]. Beijing: Science Press, 2008.[宋金明, 徐永福, 胡维平,等. 中国近海与湖泊碳的生物地球化学[M]. 北京: 科学出版社, 2008.]

[41] Li Maotian, Xu Kaiqin, Watanabe Masataka,et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem[J].Marine  Environment Research, 2007, 64(1/2): 399-408.

[42] Wei Hai, He Yunchang, Li Qingji,et al. Summer hypoxia adjacent to the Changjiang Estuary[J].Journal of Marine System, 2007,67(3/4): 292-303.

[43] Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world[J].Marine Environment Research, 2007, 64(4): 399-408.

[44] Zhang Naixing, Song Jinming, He Zhipeng,et al. Effects of excessive inorganic nitrogen on inorganic carbon system in seawater simulated experiments[J].Environmental Science, 2008, 29 (6):1 469-1 477.[张乃星, 宋金明, 贺志鹏, 等. 海水无机碳对过量无机氮输入引起的富营养化响应的模拟研究[J]. 环境科学, 2008, 29 (6):1 469-1 477.]

[45] Zheng Guoxia, Song Jinming, Wang Yunhua,et al. Effects of typical organic pollutants on marine dioxide carbon system in simulated experiments[J].Environmental Science, 2009, 29(5):1 306-1 314.[郑国侠, 宋金明, 王云华, 等. 典型有机污染物影响下海水二氧化碳体系变化的室内模拟研究[J]. 环境科学,2009,29(5): 1 306-1 314.]

[46] Zheng Guoxia, Song Jinming, Wei Junfeng,et al. Effects of heavy metal (copper, cadmium, zinc and lead) on marine inorganic carbon system in simulated experiments[J].Acta Ecologica Sinica, 2009, 29(6):3 009-3 018.[郑国侠,宋金明,魏俊锋, 等. 重金属(铜、镉、锌和铅)对海水无机碳体系影响的模拟研究[J]. 生态学报,2009, 29(6):3 009-3 018.]

[47] Chai Chao, Yu Zhiming, Song Xiuxian,et al. Exporatory data analysis to the study of eutrophication in the Yangtze River Estuary, China[J].Environmental Science, 2007, 28(1): 53-58.[柴超, 俞志明, 宋秀贤,等.长江口水域富营养化特征的探索性数据分析[J]. 环境科学, 2007, 28(1): 53-58.]

[48] Li Qian. The Sources and Variation of Particulate Organic Matter and Their Relationship with the Carbon Fixation in the Frequent Harmful Algal Blooms Areas of the East China Sea[D]. Qingdao: Ocean University of China, 2007.[李骞. 春夏季东海赤潮高发区颗粒有机物的来源、含量变化及其与固碳作用的关系[D]. 青岛:中国海洋大学, 2007.]

[49] Song Jinming. Carbon sources and sinks in oceans[J].Marine Environmental Science, 2003, 22(2): 75-80.[宋金明. 海洋碳的源与汇[J]. 海洋环境科学, 2003, 22(2):75-80.]

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[4] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[5] 郑勇玲,吴承强,蔡 锋,鲍晶晶,许 艳. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9): 1026-1034.
[6] 王建丰, 王玉, 王刚. 基于FVCOM数值模拟和观察资料的长江冲淡水转向机制分析[J]. 地球科学进展, 2012, 27(2): 194-201.
[7] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[8] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
[9] 王刚,兰健,孙双文. 东海冷涡中心位置及季节性变化的初步研究[J]. 地球科学进展, 2010, 25(2): 184-192.
[10] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[11] 董桂玉,陈洪德,何幼斌,秦志勇,罗进雄,辛长静. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展, 2007, 22(9): 931-939.
[12] 周名江,朱明远. “我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J]. 地球科学进展, 2006, 21(7): 673-679.
[13] 陈纪新,黄邦钦,刘媛,曹振锐,洪华生. 应用特征光合色素研究东海和南海北部浮游植物的群落结构[J]. 地球科学进展, 2006, 21(7): 738-746.
[14] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[15] 兰健,洪洁莉,李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1145-1152.
阅读次数
全文


摘要