地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 487 -495. doi: 10.11867/j.issn.1001-8166.2006.05.0487

研究论文 上一篇    下一篇

天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程
李向应 1,李忠勤 1,陈正华 2,赵中平 1,尤晓妮 1,朱宇漫 1   
  1. 1.中国科学院寒区旱区环境与工程研究所冰芯与寒区环境重点实验室,天山冰川站,甘肃 兰州 730000;2.兰州大学资源环境学院,甘肃 兰州 730000
  • 收稿日期:2005-10-19 修回日期:2006-03-29 出版日期:2006-05-15
  • 通讯作者: 李向应 E-mail:shaanxilxy@163.com
  • 基金资助:

    国家自然科学基金项目“冰芯记录形成过程中的几个基本问题研究”(编号:40571033);国家自然科学基金项目“天山乌鲁木齐河源1号冰川与奎屯河哈希勒根51号冰川冰雪过程观测与研究”(编号:40371028);国家野外台站基金项目“乌鲁木齐河源1号冰川雪冰环境记录形成过程的观测与研究”(编号:052062);国家自然科学基金创新群体项目“冰芯与寒区环境”(编号:40121101)资助.

Seaspnal Variations and Elution Processes of pH and Electrical Conductivity in Snowpits on Glacier No.1 at the Urumqi River Head, Tianshan

Li Xiangying 1,Li Zhongqin 1,Chen Zhenghua 2,Zhao Zhongping 1,You Xiaoni 1,Zhu Yuman 1   

  1. 1.Tianshan Glaciological Station/Key Laboratory of Ice Core and Cold Regions Environment, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China;2.College of Resources and Environment, Lanzhou University, Lanzhou 730000, China
  • Received:2005-10-19 Revised:2006-03-29 Online:2006-05-15 Published:2006-05-15

自2002年9月14日至2004年9月28日,在天山乌鲁木齐河源1号冰川积累区雪坑中连续观测取样,频率为1次/周。对表层雪样品和粒雪坑样品的pH值和电导率进行了分析。结果表明,表层雪的pH值和电导率具有明显的季节变化趋势,与本区域的主导山谷风风向NE和ENE密切相关。在春季,由于尘暴发生频率的增加,表层雪的pH值呈现较强碱性,电导率达到最大值;在冬季,由于原生气溶胶向次生气溶胶的转化,pH值呈现较弱碱性,电导率达到最小值。在后沉积过程中(2003年10月4日至2004年9月8日),雪坑中不同时期的pH值和电导率呈现不同的季节变化特征和淋溶过程。电导率的峰值P1进入粒雪冰的时间比与它相对应的大粒径(直径>10 μm)微粒的浓度峰值提前40天左右;在有的雪坑中,pH值和电导率的峰值出现在污化层附近,与污化层的位置有较好的一致性,说明污化层对可溶性离子的淋溶作用可能有一定的影响。相关分析表明,Ca2+是影响表层雪中pH值和电导率变化的最主要离子。

Analysis of pH and electrical conductivity in surface snow and snowpit samples collected successively in a weekly basis from September 14, 2002 to September 28, 2004 on the east branch of Glacier No.1 at the Urumqi river head, Tianshan is presented. pH and electrical conductivity in surface snow show obvious seasonal variations, which to some extent are associated with the dominant NE and ENE valley wind. The pH in surface snow is more alkaline and electrical conductivity in surface snow reaches maximum in spring because of the Asian dust storm increases and primary aerosols contribution; pH in surface snow is less alkaline and electrical conductivity in surface snow reaches minimum in winter due to the transformation of primary aerosol to secondary aerosol. During the post-depositional processes (October 4, 2003 September 8, 2004), pH and electrical conductivity in snowpits duing different periods show visible seasonal characteristics and elution processes. The date that the peak value P1 of electrical conductivity in snowpit merges into firn ice is about 40 days prior to that of large particles (Diameter>10μm) merging into firn ice. To some extent, the peak values of pH and electrical conductivity in some snowpits occur near dust layers and their peak values also correspond to the dust layers in snowpits, which imply that dust layers probably had an influence on elution processes of soluble ions. Electrical conductivity observations indicate different elution of some of ions in snowpits, the elution of soluble ions is more likely and easier to happen than that of insoluble ions in snowpits. Furthermore, correlation analysis shows that Ca2+ is the key ion determining pH and electrical conductivity in surface snow.

中图分类号: 

[1] Wolff E W, Peel D A. The record of global pollution in polar snow and ice[J]. Nature,1985,313: 535-540.

[2] Barnola J M, Raynaud D, Korotkevich Y S, et al. Vostok ice core provides 160000 year record of atmospheric CO2[J]. Nature,1987,329:408-414.

[3] Gu Juan, He Yuanqing, Zhang Zhonglin, et al. The response of pH Value in Ice Core to Precipitation in the Mt. Yulong [J]. Journal of Glaciology and Geocryology, 2005, 4 (27): 509-514. [顾娟,何元庆,张忠林,. 玉龙雪山浅冰芯pH值对冰川作用区降水量变化的响应[J].冰川冻土,2005,4(27):509-514.]

[4] De Angelis M, Barkov N I, Petrov V N. Aerosol concentrations over the last Climate Cycle (160kyr) from an Antarctic Ice Core[J]. Nature,1987,325:318-321.

[5] Jouzel J, Petit J R, Raynaud D. Palaeoclimatic Information from Ice Cores: The Vostok Records[J]. Earth Sciences, 1990,81:349-355.

[6] Mayewski P A, Meeker L D, Morrison M C, et al. Greenland Ice Core“Signal” Characteristics: An Expand View of Climate Change[J]. Journal of Geophysical Research,1993,98:12 839-12 847.

[7] Mayewski P A, Twiker M S, Whitlow S L, et al. Climate Change during the Last Deglaciation in Antarctica[J]. Science,1996,272:1 636-1 638.

[8] Taylor K C, Hammer C U, Alley R B, et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores[J]. Nature,1993,366:549-552.

[9] Wolff E W, Moore J C, Clausen H B, et al. Long-term changes in the acid and salt concentrations of the GRIP Greenland ice core from electrical stratigraphy [J]. Journal of Geophysical Research,1995,100:16 249-16 264.

[10] Hammer C U. Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes[J]. Journal of Glaciology,1980,25(93):359-372.

[11] Xiao Cunde, Qin Dahe, Ren Jiawen, et al. The difference of atmospheric chemical loadings shown by conductivity of and ice between Antarctic, Arctic and Qinghai-Tibetan Plateau[J]. Chinese Journal of Polar Science, 1999, 10(1):45-50.[效存德,秦大河,任贾文,.雪冰电导率反映的南、北极和青藏高原大气环境差异[J].极地研究,1999,10(1):45-50.]

[12] Yao Tandong, Sheng Wenkun, Yang Zhihong. A study on ice and snow chemistry in Qing-Zang (Tibet) Plateau[C]Yao Tandong, Agrta Y, et al. Glaciological Climate and Environment on Qing-Zang Plateau. Beijing:Science Press,1993:8-15.[姚檀栋,盛文坤,杨志红.青藏高原的冰雪化学研究[C]青藏高原冰川气候与环境.北京:科学出版社,1993:8-15.]

[13] Sheng Wenkun, Yao Tandong, Xie Chao, et al. Analysis of pH and electrical conductivity in Guliya ice cores since Little Ice Age [J]. Journal of Glaciology and Geocryology,1995,17(4):360-365.[盛文坤,姚檀栋,谢超,.古里雅冰芯小冰期以来的pH值和电导率分析[J].冰川冻土,1995,17(4):360-365.]

[14] Sheng Wenkun, Yao Tandong. Acidity variation in the Guliya Ice Cap region approached by pH and electrical conductivity in ice core[C]Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology (Vol. 1). Lanzhou:Gansu Culture Press,1996:219-226.[盛文坤,姚檀栋.用冰芯的pH值及电导率探讨古里雅冰川作用区的干湿变化[C]第五界全国冰川冻土学大会论文集().兰州:甘肃文化出版社,1996:219-226.]

[15] Hou Shugui, Qin Dahe, Ren Jiawen, et al. The present environmental processes of Ice Core pH and conductivity records: A case study at the Headwaters of the of the Urumqi River [J]. Journal of Glaciology and Geocryology,1999, 21(3):225-232.[侯书贵,秦大河,任贾文,. 天山乌鲁木齐河源1号冰川pH和电导率记录的现代环境过程[J].冰川冻土,1999,21(3):225-232.]

[16] Li Xinqing, Qin Dahe, Jiang Guibin, et al. Atmospheric pollution of a remote area of Tianshan Mountain: Ice core record[J]. Journal of Geophysical Research,2003, 108(D14):4-1-4-10.

[17] Luo Hongzhen. Hydrochemical features of the Glacier No.1 in the source region of Urumqi River, Tianshan[J]. Journal of Glaciology and Geocryology,1983,5(2):55-64.[骆鸿珍. 天山乌鲁木齐河源1号冰川的水化学特征[J].冰川冻土,1983,5(2):55-64.]

[18] Zhang Yinsheng, Kang Ersi, Liu Chaohai. Mountain climate analysis in Urumqi River valley, Tianshan[J]. Journal of Glaciology and Geocryology,1994,16(4):333-341.[张寅生, 康尔泗, 刘潮海. 天山乌鲁木齐河流域山区气候特征分析[J].冰川冻土,1994,16(4):333-341.]

[19] Williams M W, Tonnessen K A, Melack J M, et al. Sources and spatial variation of the chemical composition of snow in the Tien Shan, China[J]. Annals of Glaciology,1992,16:25-32.

[20] Li Zhongqin, Han Tianding, Jing Zhefan, et al. A summary of 40-year observed variation facts of climate and Glacier No.1 at the headwaters of Urumqi River, Tianshan, China [J]. Journal of Glaciology and Geocryology, 2003, 25(2):117-123.[李忠勤,韩添丁,井哲帆,.乌鲁木齐河源区气候变化和1号冰川40a观测事实[J].冰川冻土,2003,25(2):117-123.]

[21] Han Tianding, Liu Shiyin, Ding Yongjian, et al. A characteristics mass balance of Glacier No.1 at the headwaters of the Urumqui river,Tianshan mountains[J]. Advances in Earth Science,2005, 20(3): 298-303.[韩添丁,刘时银,丁永建,. 天山乌鲁木齐河源1号冰川物质平衡特征研究[J].地球科学进展,2005,20(3):298-303.]

[22] Liu Shiyin,Wang Ninglian,Ding Yongjian,et al. On the characteristics of glacier fluctuations during the last 30 years in Urumqi river basin and the estimation of temperature rise in the high mountain area[J]. Advances in Earth Science,1999,14(3):279-285.[刘时银,王宁练,丁永建,.30年来乌鲁木齐河流域冰川波动特征与流域高山带升温幅度地估算[J].地球科学进展,1999,14(3):279-285.]

[23] Li Xiangying, Li Zhongqin, You Xiaoni, et al. Study of the ice formation zones and stratigraphy profiles of snow pits on the Glacier No.1 at the headwaters of Urumqi river[J]. Journal of Glaciology and Geocryology, 2006, 28(1):37-44.[李向应,李忠勤,尤晓妮,.天山乌鲁木齐河源1号冰川成冰带及雪层剖面特征研究[J].冰川冻土,2006,28(1):37-44.]

[24] Su Zhen,Liu Zongxiang,Wang Wenti,et al. Glacier fluctuations responding to climate change and forecast of its tendency over the Qinghai-Tibet Plateau[J]. Advances in Earth Science,1999,14(6):607-612.[苏珍,刘宗香,王文悌,.青藏高原冰川对气候变化地响应及趋势预测[J].地球科学进展,1999,14(6):607-612.]

[25] Li Zhongqin, Ross Edwards, Mosley-Thompson E, et al. Seasonal Variabilities of Ionic Concentration in Surface Snow and Elution Process in Snow-firn Packs at PGPI Site on Glacier No.1 in Eastern Tianshan, China[J]. Annals of Glaciology,2006(In press).

[26] Sun Junying, Qin Dahe, Paul A. Mayewski, et al. Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China[J]. Journal of Geophysical Research,1998,103(D21):28 022-28 027.

[27] Wang Feiteng, Li Zhongqin, You Xiaoni, et al. Seasonal evolution of aerosol stratigraphy in Glacier No. 1 percolation zone, eastern Tianshan, China[J]. Annals of Glaciology,2006(In press).

[28] Smart C C. Temperature compensation of electrical conductivity in glacial meltwaters[J]. Journal of Glaciology, 1992, 128(38):9-12.

[29] He Dixin. Forming and Improving of Pickled soil[M]. Lanzhou: Gansu People Press, 1980.[贺涤新.盐碱土的形成和改良[M].兰州:甘肃人民出版社,1980.]

[1] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[2] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[3] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[4] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[5] 刘 力,井哲帆,杜建括. 玉龙雪山白水1号冰川运动速度测量与研究[J]. 地球科学进展, 2012, 27(9): 987-992.
[6] 乔培军,王婷婷,翦知湣. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO 2- 3]的潜力[J]. 地球科学进展, 2012, 27(6): 686-693.
[7] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO - 3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[8] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
[9] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[10] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[11] 李向应,刘时银,韩添丁,李忠勤,卢爱刚. 天山东部冰川雪坑离子浓度特征的对比研究[J]. 地球科学进展, 2008, 23(12): 1268-1276.
[12] 兰健,洪洁莉,李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1145-1152.
[13] 尤晓妮,李忠勤,王飞腾,朱宇曼. 乌鲁木齐河源1号冰川不溶微粒的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1164-1170.
[14] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[15] 韩添丁;刘时银;丁永建;焦克勤. 天山乌鲁木齐河源1号冰川物质平衡特征[J]. 地球科学进展, 2005, 20(3): 298-303.
阅读次数
全文


摘要