地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 496 -503. doi: 10.11867/j.issn.1001-8166.2006.05.0496

研究论文 上一篇    下一篇

中国断层系分维及其灰色预测研究
朱晓华 1,蔡运龙 2   
  1. 1.中国科学院地理科学与资源研究所,北京 100101;2.北京大学资源与环境地理学系,北京 100871
  • 收稿日期:2004-10-08 修回日期:2006-02-09 出版日期:2006-05-15
  • 通讯作者: 朱晓华 E-mail:zhuxh@igsnrr.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“西南喀斯特山区土地利用/土地覆被变化及其对土地资源利用可持续性的影响”(编号:40335046);国家自然科学基金项目“土地结构的分形性质与尺度转换研究”(编号:40301002)资助.

Fractal Dimensions of Faults of China and Their Grey Forecast

Zhu Xiaohua 1,Cai Yunlong 2   

  1. 1.Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2.Department of Resources, Environments, Geography, Peking University, Beijing 100871, China
  • Received:2004-10-08 Revised:2006-02-09 Online:2006-05-15 Published:2006-05-15

应用分形理论和灰色系统理论方法,对中国断层系分维及其灰色预测问题进行了探讨。首先,计算并分析了中国断层系分维及其空间变化特征;其次,在计算中国大陆和南岭地区不同地质历史时期断层系分维、揭示断层系具有的跨尺度分形特征的基础上,对分维变化进行了灰色预测,其结果表明:分形理论与灰色理论结合是研究断层系时空间特征的有力工具,中国大陆下一期断层系分维预测值为1.5995,预示中国大陆下一期断层系空间结构的复杂程度将有所增加。

    Based on extensive and thorough observation of a large amount of geographical, geological and economic phenomena such as coastline, earthquake, stock etc, Mandelbrot discovered the inherent character in nature that he called fractal, and he also considered the fractal dimension as the quantitative parameter to describe numerous irregular phenomena in nature. As a new tool to picture the complexity of nature, the fractal theory has been widely used in many fields. As to the study of fault, it has made progress in many fields such as the fractal character, the spatial distribution model, movement, classification, calculation of fractal dimension of fault, the relation between fault and earthquake, the fractal character of rock, and scaling between short and large fault, etc. Researches on the fractal dimensions of China's faults, the prediction of dynamic change, have not been attempted till now. These questions are discussed in this paper.
    Based on the fractal theory and grey theory, the fractal character of faults of China has been quantitatively analyzed in this paper. Firstly, fractal dimensions of faults of China's mainland are calculated and compared. The fractal dimension of the whole faults of China's mainland is 1.7682, with active faults is 1.5989, and 1.6755 for less active faults. The fractal dimension of faults of the Qinghai Tibet Plateaus the largest in eight natural regions of China. Secondly, relationship of fractal dimensions between faults and mountains is discussed, and the quantitative relationship between faults and mountains is established. Thirdly, fractal dimensions of faults of China's mainland in different geological periods are calculated, and grey forecast models of fractal dimensions are established, too. It indicates that the fractal theory and grey theory are useful to the study of the characteristics of faults. The fractal dimension of faults of China's mainland for next geological periods may be 1.5995, and the complexity of faults will be increased correspondingly.

中图分类号: 

[1] Sun Chengquan,Qu Jiansheng. Status and trends of the international Earth Science Studies[J]. Advances in Earth Science,2002,17(3):344-347. [孙成权,曲建升. 国际地球科学发展态势[J]. 地球科学进展,2002,17(3):344-347.]

[2] Zhang Zhiqiang. Analysis of the strategic plans of international geosciences,resources,environment and ecology[J]. Advances in Earth Science,2003,18(6):960-973.[张志强. 国际地球科学与资源环境科学发展战略分析[J]. 地球科学进展,2003,18(6):960-973.]

[3] Chen Panqin. Earth system science:Progress and prospect[J]. Advances in Earth Science,2003,18(6):974-976. [陈泮勤. 地球系统科学的发展与展望[J]. 地球科学进展,2003,18(6):974-976.]

[4] Davy P,Hansen A,Bonnet E,et al. Localization and faults growth in layered brittle-ductile systems-Implications for Deformations of the Continental Lithosphere[J]. Journal of Geophysical Research-Solid Earth,1995,100(B4):6 281-6 294.

[5] Turcotte D L. Scaling in geology-landforms and earthquakes[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(15):6 697-6 704.

[6] Wang X Z,Huang Y. Dielectric-Breakdown-type crack-growth models and the fractal distribution of earthquakes faults[J]. Physical Review:E,1995,52(2):1 476-1 479.

[7] Knott S D,Beach A,Brockbank P J,et al. Spatial and mechanical controls on normal fault populations[J]. Journal of Structural Geology,1996,18(2/3):359-372.

[8] Cello G. A quantitative structural approach to the study of active fault zones in the Apennines(Peninsular Italy)[J]. Journal of Geodynamics,2000,29(3/5):265-292.

[9] Sunmonu L A,Dimri V P. Fractal analysis and seismicity of Bengal basin and Tripura fold belt,northeast India[J]. Journal of the Geological Society of India,1999,53(5):587-592.

[10] Lei X L, Kusunose K. Fractal structure and characteristic scale in the distributions of earthquake epicentres,active faults and rivers in Japan[J]. Geophysical Journal International,1999,139(3):754-762.

[11] Kato N,Lei X L. Interaction of parallel strike-slip faults and a characteristic distance in the spatial distribution of active faults[J]. Geophysical Journal International,2001,144 (1):157-164.

[12] Nakamura N, Nagahama H. Changes in magnetic and fractal properties of fractured granites near the Nojima fault,Japan[J]. Island Arc,2001,10(3/4):486-494.

[13] Institute of Geology and Institute of Geophysics of China Earthquake Administration. Seismotectonic Map of China Based on Interpretation of Satellite Images[M]. Beijing:Sinomaps Press,1980. [国家地震局地质研究所,国家地震局地震研究所. 中国卫星影象地震构造判读图[M]. 北京:中国地图出版社,1980.]

[14] Editional Board of Seismic Zoning Map of China,China Earthquake Administration. Map of Active Tectonics in China and Its Adjacent Seas[M]. Beijing: Seismic Press,1990. [国家地震局中国地震区划图编委会. 中国及邻近海域活动构造图[M]. 北京:地震出版社,1990.]

[15] Bureau of Geology and Mineral Resources of Jiangxi Province. Tectonic Map of Nanling and Neighboring Area of China[M]. Beijing:Geological Press,1998. [江西省地质矿产局. 中国南岭及其临区地质构造图[M]. 北京:地质出版社,1988.]

[16] Grassberger P. On efficient box counting algorithms[J]. International Journal of Modern Physics:C, 1983, 4(3):515-523.

[17] Zhu Xiaohua,Zha Yong. Application of Mapinfo and Arcview GIS in calculating fractal dimensions of lines[J]. Journal of Geomatics,2002,27(5):4-5. [朱晓华,查勇. MapInfoArcView GIS 软件在线体分形分析中的应用[J]. 测绘信息与工程,2002,27(5):4-5.]

[18] Deng Julong. Basic Methods of Grey System[M]. Wuhan:Huazhong University of Science & Technology Press,1987. [邓聚龙. 灰色系统基本方法[M]. 武汉:华中理工大学出版社,1987.]

[19] Deng Julong. Grey Forecast and Decision-Making[M]. Wuhan:Huazhong University of Science & Technology Press,1986. [邓聚龙. 灰色预测与决策[M]. 武汉:华中理工大学出版社,1986.]

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[4] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[5] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[6] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[7] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[8] 秦蕴珊,尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.
[9] 郭毅,赵景波. 1368—1948年陇中地区干旱灾害时间序列分形特征研究[J]. 地球科学进展, 2010, 25(6): 630-637.
[10] 张泓,张群,曹代勇,李小彦,李贵红,黄文辉,冯宏,靳德武,张子敏,贾建称,石智军,邵龙义,程建远,汤达祯,姜在炳. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 2010, 25(4): 343-352.
[11] 刘德地,陈晓宏,李梅,楼章华. 基于区域优势理论的中国水资源利用现状分析[J]. 地球科学进展, 2009, 24(11): 1247-1253.
[12] 文战久,高 星,姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展, 2007, 22(6): 598-604.
[13] 万丽,王庆飞. 成矿元素品位有序数据集自仿射分形方法应用性评价[J]. 地球科学进展, 2007, 22(4): 357-361.
[14] 冯维波. 我国城市游憩空间研究现状与重点发展领域[J]. 地球科学进展, 2006, 21(6): 585-592.
[15] 陈彦光,刘继生. 城市人口分布空间自相关的功率谱分析[J]. 地球科学进展, 2006, 21(1): 1-9.
阅读次数
全文


摘要