地球科学进展 ›› 2021, Vol. 36 ›› Issue (6): 625 -631. doi: 10.11867/j.issn.1001-8166.2021.063

生态学研究 上一篇    下一篇

群落物种多度的分形模型和一般性分布规律的验证与探讨
高俊峰( ),苏强( )   
  1. 中国科学院大学地球与行星科学学院,北京 100043
  • 收稿日期:2021-03-25 修回日期:2021-05-30 出版日期:2021-06-10
  • 通讯作者: 苏强 E-mail:gaojunfeng20@mails.ucas.ac.cn;sqiang@ucas.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“群落物种多样性决定机制‘熵假说’的验证:以浮游植物群落物种多样性及其地理分布格局研究为例”(4207011731);“浮游植物物种丰度格局的分形理论模型研究”(41676113)

Verification and Discussion on Fractal Model and the General Pattern on Species Abundance in Community

Junfeng GAO( ),Qiang SU( )   

  1. College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100043,China
  • Received:2021-03-25 Revised:2021-05-30 Online:2021-06-10 Published:2021-07-22
  • Contact: Qiang SU E-mail:gaojunfeng20@mails.ucas.ac.cn;sqiang@ucas.ac.cn
  • About author:GAO Junfeng (1997-), male, Nanyang City, Henan Province, Master student. Research areas include biodiversity. E-mail: gaojunfeng20@mails.ucas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Testing the entropy hypothesis of the determinant of community diversity according to the diversity and biogeography of phytoplankton communities"(4207011731);"Analyzing fractal theory model of species abundance distribution in phytoplankton communities"(41676113)

解析群落物种间的个体数量关系,也称群落物种多度分布,被认为是理解群落物种多样性决定机制的关键。近年来已建立了许多物种多度分布模型,但却因模型众多且又难以区分而引发了许多争议。已有研究表明,对物种多度分布模型的筛选不仅要考察其与群落样本实测数据的拟合效果,还要检验其能否在更深层次上揭示某些宏观生态学现象。Su建立的分形模型拟合效果较好,并揭示了物种多度分布的一般性规律,即Nr/N1往往趋近于1∶1/2∶1/3……(NrN1分别为降序排序中第r位和第1位物种的个体数量)。但该模型尚未得到充分的重视,相关的验证研究也较为欠缺。鉴于此,通过一个全球性群落物种数据库资料,对该模型及物种多度分布的一般性规律进行更为详细的检验。结果显示,分形模型的实际拟合效果很好;物种多度分布的一般性规律可以得到该数据库的支持与验证。上述结果可为比较全面地理解物种多度分布、探究物种多样性的决定机制提供更加可靠的科学依据。

The analysis of individual quantitative relationship among community species, also known as the Species Abundance Distribution (SAD), is considered to be the key to understanding what determines species diversity. In recent years, numerous SAD models have been proposed on various theoretical grounds, but it is difficult to draw general conclusions about which models provide the best fit to SADs. Previous studies have shown that the screening of SAD model should not only examine the goodness of fit of SAD model with the empirical data of community samples, but also evaluate model's ability to simultaneously explain some macro ecological patterns. The fractal model proposed by Su has good fit to the empirical data of community samples and reveals the general pattern of SAD; that is, Nr / N1 tends to be 1∶1/2∶1/3… (Nr/N1, Nr and N1 represent the number of individuals of the r-th and the first species in descending order). However, the model has not been given enough attention, and the relevant verification research is also lacking. This paper uses a global community species database to test the model and the general pattern of SAD. The results show that: the fractal model has a good fit to the database; the general pattern of SAD can be supported by the database. These results might provide a more reliable scientific basis for understanding SAD and exploring the determinant mechanism of species diversity.

中图分类号: 

表1 以群落物种间生物个体数量降序排列,物种排序位数 (r)、新增物种倍数 (Kr)和第 r个物种多度 (Nr)之间的关系
Table 1 Ranking species abundance in descending order, the relationships of the rank ( r), the multiple of new species ( Kr) and the abundance of the r-th species ( Nr) at each step of ecological succession were shown
图1 布朗大学浮游有孔虫数据库(BFD1 265个研究站位全球分布图
Fig. 1 Global distribution of 1 265 research stations in Brown University Foraminiferal Database BFD
表2 BFDp值的计算结果与 Su [ 21 ]对另外 8个数据库 p值的计算结果的详细信息
Table 2 Detailed information of p value calculation results in BFD and calculation results of p value of other eight databases by Su [ 21 ]
图2 BFD1 265组群落样本分形参数p的频数分布
Fig. 2 The frequency distribution of the fractal parameter p of 1 265 groups of community samples in BFD
图3 采用Su 20 提出的分形模型对从BFD中随机选取的4个自然群落的拟合
r按物种多度降序排列后的排序位数, N 1Nr分别表示降序排序中第1位和第 r位物种的个体数量; R 2为拟合优度,取值范围在0和1之间, R 2越接近1,拟合结果越好
Fig. 3 The Su's fractal model 20 fits four natural communities randomly selected from BFD
The r was arranged in descending order of species abundance. N 1 and Nr are the abundances of the 1st and r-th species in descending order of species abundance, respectively. R 2 is the goodness of fit. The closer R 2 is to 1, the better the fitting result is
1 TOKESHI M. Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993, 24(8): 111-186.
2 WHITTAKER R H. Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution[J]. Science, 1965, 147(3 655): 250-260.
3 VOLKOV I, BANAVAR J R, HUBBELL S P, et al. Neutral theory and relative species abundance in ecology[J]. Nature, 2003, 424(6 952): 1 035-1 037.
4 CHAO A, HSIEH T C, CHAZDON R L, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory[J]. Ecology, 2015, 96(5): 1 189-1 201.
5 WANG Pinxian. Deep-sea coral forest[J]. Advances in Earth Science, 2019, 34(12): 1 222-1 233.
汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1 222-1 233.
6 ZHAO Tianqi, GU Chen, WANG Yating, et al. Species abundance distribution pattern of typical grassland plant communities under different utilization patterns[J]. Acta Ecologica Sinica, 2017, 37(23): 7 894-7 902.
赵天启, 古琛, 王亚婷, 等. 不同利用方式下典型草原植物群落物种多度分布格局[J]. 生态学报, 2017, 37(23): 7 894-7 902.
7 WANG Y, ZHOU H, CAI J, et al. Species abundance distribution models of Toona ciliata communities in Hubei Province, China[J]. Journal of Forestry Research, 2019, 32(11): 494-509.
8 SU Qiang. Fractal analysis of community species abundance pattern[J]. Advances in Earth Science, 2015, 30(10): 1 144-1 150.
苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1 144-1 150.
9 ULRICH W, OLLIK M, UGLAND K I. A meta-analysis of species-abundance distributions[J]. Oikos, 2010, 119(7): 1 149-1 155.
10 MOTOMURA I. On the statistical treatment of communites[J]. Zoolog Science, 1932, 44: 379-383.
11 FISHER R A, CORBET A S, Williams C B. The relation between the number of species and the number of individuals in a random sample of an animal population[J]. Journal of Animal Ecology, 1943, 12(1): 42-58.
12 PRESTON F W. The commonness, and rarity, of species[J]. Ecology, 1948, 29(3): 254-283.
13 FRONTIER S. Applications of fractal theory to ecology[M]. Heidelberg: Springer, 1987: 335-378.
14 FRONTIER S. Species diversity as a fractal property of biomass[C]// NOVAK M, ed. Proceedings of the second IFIP working conference on fractals in the natural and applied sciences. Netherlands: North-Holland Publishing, 1994: 119-127.
15 PENG Shaolin, YIN Zuoyun, REN Hai, et al. Research progress on species abundance relationship model of multi species aggregation[J]. Acta Ecologica Sinica, 2003, 23(8): 1 590-1 605.
彭少麟, 殷祚云, 任海, 等. 多物种集合的种—多度关系模型研究进展[J]. 生态学报, 2003, 23(8): 1 590-1 605.
16 ENQUIST B J, Sanderson J, Weiser M D. Modeling macroscopic patterns in ecology[J]. Science, 2002, 295(5 561): 1 835-1 837.
17 RICKLEFS R E. A comment on Hubbell's zero-sum ecological drift model[J]. Oikos, 2003, 100(1): 185-192.
18 MCGILL B J, ETIENNE R S, GRAY J S, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letter, 2007, 10(10): 995-1 015.
19 BALDRIGE E, HARRIS D J, XIAO X, et al. An extensive comparison of species-abundance distribution models[J]. PeerJ, 2016, 4(12): e2823.
20 SU Q. Analyzing fractal property of species abundance distribution and diversity indexes[J]. Journal of Theoretical Biology, 2016, 392: 107-112.
21 SU Q. A general pattern of the species abundance distribution[J]. PeerJ, 2018, 6(11): e5928.
22 RUTHERFORD S, D'HONDT S, PRELL W. Environmental controls on the geographic distribution of zooplankton diversity[J]. Nature, 1999, 400(6 746): 749-753.
23 LI Junjun, ZHANG Jiantao. Research on the determinability of determinable coefficient in regression model[J]. Statistics & Decision, 2005, 11(6): 19-20.
李军军, 张建涛. 回归模型可决系数的可决性研究[J]. 统计与决策, 2005, 11(6): 19-20.
24 PASSY S I. Abundance inequality in freshwater communities has an ecological origin [J]. The American Naturalist, 2016, 187(4): 502-516.
25 WHITE E P, THIBAULT K M, XIAO X. Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model[J]. Ecology, 2012, 93(8): 1 772-1 778.
26 CONNOLLY S R, MACNEIL M A, CALEY M J, et al. Commonness and rarity in the marine biosphere[J]. Proceedings of the National Academy of Sciences, 2014, 111(23): 8 524-8 529.
27 GUO Yanlong, ZHAO Zefang, QIAO Huijie, et al. Challenges and development trend of species distribution model[J]. Advances in Earth Science, 2020, 35(12):1 292-1 305.
郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1 292-1 305.
28 NIU Kechang, LIU Yining, SHEN Zehao, et al. Neutral theory and niche theory of community construction[J]. Biodiversity Science, 2009, 17(6): 579-593.
牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6): 579-593.
29 RéNYI A. On measures of entropy and information[C]//NEYMAN J. Proceedings of the Fourth Berkeley Symposium on mathematical statistics and probability. Oakland, CA: University of California Press, 1961: 547-561.
30 HILL M O. Diversity and evenness: a unifying notation and its consequences[J]. Ecology, 1973, 54(2): 427-432.
31 ZILLIO T, CONDIT R. The impact of neutrality, niche differentiation and species input on diversity and abundance distributions[J]. Oikos, 2007, 116(6): 931-940.
32 CONNOLLY S R, DORNELAS M. Fitting and empirical evaluation of models for species abundance distributions[M]. Oxford: Oxford University Press, 2011: 123-140.
33 MATTHEWS T J, WHITTAKER R J. Review: on the species abundance distribution in applied ecology and biodiversity management[J]. Journal of Applied Ecology, 2015, 52(2): 443-454.
34 CONNOLLY S R, DORNELAS M, BELLWOOD D R, et al. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs[J]. Ecology, 2009, 90(11): 3 138-3 149.
35 ROSINDELL J, HARMON L J. A unified model of species immigration, extinction and abundance on islands[J]. Journal of Biogeography, 2013, 40(6): 1 107-1 118.
36 GOLESTANIA, GRAS R. A new species abundance distribution model based on model combination[J]. International Journal of Biostatistics, 2013, 9(1): 1-16.
[1] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[2] 朱晓华,蔡运龙,王建. 中国旱涝灾害的分形结构[J]. 地球科学进展, 2003, 18(4): 509-514.
[3] 高鹏;李后强;艾南山. 流域地貌的分形研究[J]. 地球科学进展, 1993, 8(5): 63-70.
阅读次数
全文


摘要