Please wait a minute...
img img
高级检索
地球科学进展  1993, Vol. 8 Issue (5): 63-70    DOI: 10.11867/j.issn.1001-8166.1993.05.0063
学科发展与研究     
流域地貌的分形研究
高鹏1;李后强2;艾南山2
1.兰州大学地理系,730000;2.四川大学物理系,610064
THE FRACTAL STUDY OF THE DRAINAGE GEOMORPHOLOGY
Gao Peng1,Li Houqiang2, Ai Nanshan2
1.Geography Department of Lanzhou University. Lanzhou 730000;2.Physics Department of Sichuan University, Chengdu 610064
 全文: PDF(1896 KB)  
摘要:

非线性科学中的分形理论已广泛应用于各个学科。在地貌学研究中,数学—物理方法首先被引入到流域地貌的形成、演化的研究中。分形理论的运用则突破了传统方法的局限,开辟了一条新思路。尽管其运用在流域地貌中才刚刚开始,但人们已感觉到它强大的生命力。本文分析了流域地貌的分形特征,着重介绍了目前国内外已建的各种模型及其最新进展。

关键词: 分形理论分维流域地貌水系    
Abstract:

The fractal theory, which is one of the nonlinar sciences, has been applied to many kinds of fields. In the field of Geomorphology , mathematical methods are first poured into drainage geomorphology for the study of its forming and evolving. The utilization of fractal theory ,however ,breaks up the limit of these traditional means and creats a new way. Although.it is a beginning to apply it in the drainage geomorphology, its strong vitality has been displayed. This article analyses the fractal characters of the drainage geomorphology and intensingly introduces all kinds of fractal models in the drainage geomorphology all over the world and its latest development.

Key words: fractal theory    fractal dimension    drainage geomorphology    water network
收稿日期: 1993-01-11 出版日期: 1993-09-01
基金资助:

国家自然科学基金资助项目“地貌系统演化的非线性动力学研究”(批准号 49271000)预研成果

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

高鹏;李后强;艾南山. 流域地貌的分形研究[J]. 地球科学进展, 1993, 8(5): 63-70.

Gao Peng,Li Houqiang, Ai Nanshan. THE FRACTAL STUDY OF THE DRAINAGE GEOMORPHOLOGY. Advances in Earth Science, 1993, 8(5): 63-70.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1993.05.0063        http://www.adearth.ac.cn/CN/Y1993/V8/I5/63

[1]A N Strahler.Quantitative/dynamic geomorphology at columbia 1945-60.Progress in Physical Geography, 1992,16, 65-84
[2]魏洪森,宋永华等.开创复杂性研究的新学科:系统科学纵览.四川教育出版社,1991
[3]高安秀树(日).分数维.地震出版社,1989
[4]Jurgens等.分形语言.科学,1990,(12).
[5]李后强等.分形与分维.四川教育出版社,1990
[6]董连科.分形理论及应用.辽宁科学技术出版社,1991
[7]北京大学等.地貌学.人民教育出版社,1978
[8]R E Horton. Erosional Development of Srteams and Their Drainage Basins:Hydrophysical Approach to Quantitative Morphology .Bul1 Geol Soc Am, 1945, 56 :275-370 .
[9]A E Scheidegger.Theoritical gemphlology.Verlag-Springer,1961
[10]C T Yang,C C Sang.Theory of Minimum Rate of Energy Dissipation.Journal of the Hydraulics Division, 1979, 105(7):769-784
[11]黄万里. 连续介体动力学最大能量消散率定律[J]. 清华大学学报(自然科学版), 1981,21(1) .
[12]Gu H,Chen S,Qian X,Ai N,Zan T.River-geomorphologic processes and dissipation structure.in "Inter Geomorph,1986 part II":211-224 John Wiley & Sons Ltd,1987
[13]艾南山. 侵蚀流域系统的信息熵[J]. 水土保持学报, 1987,1(2) .
[14]艾南山,岳天祥. 再论流域系统的信息熵[J]. 水土保持学报, 1988,(4) .
[15]岳天祥,艾南山,张英保. 论流域系统稳定性的判别指标——超熵[J]. 水土保持学报, 1989,(2)
[16]Koreak J.Deux types fondamentaux de distribution statistique.Bulletin de l'Institut,1940,30:295-299
[17]M F Goodchild. Lakes on Fractal Surface:A Null Hypothesis for Lake--Rich Landscqpes .Mathematical Geology, 1988, 20(6) :615-630
[18]R L Curl. Fractal Dimensions and Geometries of Caves .Mathematical Geology, 1986, 18(8) :765-768
[19]牛文元.自然资源开发原理.河南大学出版社,1989
[20]龙期威.材料物理中的分形.The spring college on fractal aspects of materials,April 16-29,1989
[21]Benoit Mandelbrot.How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.Science,1967,155:636-638
[22]H Steinhaus.Mathematical Snapshots.London,Ocford University Press,1960
[23]Richardon L F.The problem of contiguity.Geoeral Systems Yearbook,1961,6:139-187
[24]Vijay K. Gupta.Statistical self-similarity in river networks parameterized by elevation.Water Resources Research, 1989,25:463-476
[25]Shreve Ronald L.Infinite Topologically Random Channel Networks.The Journal of Geology, 1967,75:178-186
[26]Snow, R. Scott.Fractal sinuosity of stream channels.Pure and Applied Geophysics PAGEOPH, 1989,131(1-2):99-109
[27]J. T. Hack.Studies of longitudinal profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 1957,294-B:45- 97
[28] B. Mandelbrot.The Fractal Geometry of Nature.Freeman,1982
[29]A T Hjelmfelt. Fractals and the River--Length Catchment Area ratio .Water Resources Bulletin, 1988, 24(2) :455-459
[30]G.E.McDermott,D.H.Pilgrim.Design flood estimation for small catchments in New South Wales.Australian Water Resources Council,Australian Government Publishing Service cat. no. 8218579.
[31]A Robert and A G Roy. On the Fractal Interpretation of the Main--Stream Length--Drainage Area Relationship .Water Resources Research, 1990, 26(9) :839-842
[32]承继成,江美球.流域地貌学模型.科学出版社,1986
[33]J Feder.Fractals.New York and London,1988
[34]P L Barbera and R Rosso. On the Fractal Dimension of Stream Networks .Water Resource Research, 1989, 25(4) :735-741 .
[35]洪时中,洪时明. 地学领域中的分维研究水系、地震及其它[J]. 大自然探索, 1988,(2) .
[36]Juan M. García-Ruiz and Fermín Otálora.Fractal trees and Horton's laws.Mathematical Geology,1992,24(1)
[37]Michael F Barnsley.Fractals Everywhere.Academic press boston,1988:394
[38]D G Tarboton,R L Bras and I R Iturbe. The Fractal Nature of River Networks .Water Resources Research, 1988, 24(8) :1317-1322
[39]L E Band. Topographic partition of watersheds with digital elevation models .Water Resour Res, 1986, 22(1) :15-24
[40]David G. Tarboton, Rafael L. Bras, Ignacio Rodriguez-Iturbe.Comment on “On the fractal dimension of stream networks” by. P. La Barbera and R. Rosso, Water Resour. Res., 1996,26, 2243-2244.
[41]P L Barbera and R Rosso.Reply.Water resources research,1990,26(9):2245-2248
[42]R Rosso,B Bacchi and P L Barbera. Fractal Relation of Mainstream Length to Catchment Area in River Networks .Water Resources Research, 1991, 27(3) :381-387 .
[43]V I Nikora. Fractal Structures of River Plan Forms .Water Resources Research, 1991, 27(6) :1327-1333
[44]李后强,艾南山. 分形地貌学及地貌发育的分形模型[J]. 自然杂志, 1992,15(7):516-519.
[45]A Robert. Statistical Properties of Sediment Bed Frofiles in Alluvial Channels .Mathematical Geology, 1988, 20(3) :205-225
[46]A Robert. Fractal Properties of Simulated Bed Profiles in Coarse--Grained Channels .Mathematical Geology, 1991, 23(3) :367-382
[47]Georges Matheron.Les variables régionalisées et leur estimation.Pairs,1965:305
[48]C P Stark. An invasion percolation model of drainage network evolution .Nature, 1991, 352 :423-425
[49]L E Gilbert.Are topographic data sets fractal?Pure and Applied Geophysics,1989,131(1-2)

[1] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[2] 赵春红, 李强, 梁永平, 许亮, 王维泰, 卢海平, 唐春雷. 北京西山黑龙关泉域岩溶水系统边界与水文地质性质[J]. 地球科学进展, 2014, 29(3): 412-419.
[3] 姚旭, 周瑶琪, 李素, 李斗. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1189-1200.
[4] 刘春茹,尹功明,Rainer Grün. 石英ESR测年信号衰退特征研究进展[J]. 地球科学进展, 2013, 28(1): 24-30.
[5] 刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.
[6] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[7] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[8] 邓英尔,贾疏源,黄润秋,李扬红. 岩溶缝洞系统地下水系研究[J]. 地球科学进展, 2008, 23(5): 489-494.
[9] 陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322.
[10] 朱晓华,蔡运龙. 中国断层系分维及其灰色预测研究[J]. 地球科学进展, 2006, 21(5): 496-503.
[11] 付伟;周永章;杨志军;张澄博;杨小强;何俊国;杨海生;罗春科. 现代海底热水活动的系统性研究及其科学意义[J]. 地球科学进展, 2005, 20(1): 81-088.
[12] 刘春学,秦德先,党玉涛,谈树成. 个旧锡矿高松矿田综合信息矿产预测[J]. 地球科学进展, 2003, 18(6): 921-927.
[13] 薛传东,刘星,杨浩,李保珠,谈树成. 昆明市地热田越流含水系统中地下热水的数值模拟[J]. 地球科学进展, 2003, 18(6): 899-905.
[14] 朱晓华,蔡运龙,王建. 中国旱涝灾害的分形结构[J]. 地球科学进展, 2003, 18(4): 509-514.
[15] 陈彦光,李宝林. 吉林省水系构成的分形研究[J]. 地球科学进展, 2003, 18(2): 178-184.