[1]A N Strahler.Quantitative/dynamic geomorphology at columbia 1945-60.Progress in Physical Geography, 1992,16, 65-84 [2]魏洪森,宋永华等.开创复杂性研究的新学科:系统科学纵览.四川教育出版社,1991 [3]高安秀树(日).分数维.地震出版社,1989 [4]Jurgens等.分形语言.科学,1990,(12). [5]李后强等.分形与分维.四川教育出版社,1990 [6]董连科.分形理论及应用.辽宁科学技术出版社,1991 [7]北京大学等.地貌学.人民教育出版社,1978 [8]R E Horton. Erosional Development of Srteams and Their Drainage Basins:Hydrophysical Approach to Quantitative Morphology .Bul1 Geol Soc Am, 1945, 56 :275-370 . [9]A E Scheidegger.Theoritical gemphlology.Verlag-Springer,1961 [10]C T Yang,C C Sang.Theory of Minimum Rate of Energy Dissipation.Journal of the Hydraulics Division, 1979, 105(7):769-784 [11]黄万里. 连续介体动力学最大能量消散率定律[J]. 清华大学学报(自然科学版), 1981,21(1) . [12]Gu H,Chen S,Qian X,Ai N,Zan T.River-geomorphologic processes and dissipation structure.in "Inter Geomorph,1986 part II":211-224 John Wiley & Sons Ltd,1987 [13]艾南山. 侵蚀流域系统的信息熵[J]. 水土保持学报, 1987,1(2) . [14]艾南山,岳天祥. 再论流域系统的信息熵[J]. 水土保持学报, 1988,(4) . [15]岳天祥,艾南山,张英保. 论流域系统稳定性的判别指标——超熵[J]. 水土保持学报, 1989,(2) [16]Koreak J.Deux types fondamentaux de distribution statistique.Bulletin de l'Institut,1940,30:295-299 [17]M F Goodchild. Lakes on Fractal Surface:A Null Hypothesis for Lake--Rich Landscqpes .Mathematical Geology, 1988, 20(6) :615-630 [18]R L Curl. Fractal Dimensions and Geometries of Caves .Mathematical Geology, 1986, 18(8) :765-768 [19]牛文元.自然资源开发原理.河南大学出版社,1989 [20]龙期威.材料物理中的分形.The spring college on fractal aspects of materials,April 16-29,1989 [21]Benoit Mandelbrot.How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.Science,1967,155:636-638 [22]H Steinhaus.Mathematical Snapshots.London,Ocford University Press,1960 [23]Richardon L F.The problem of contiguity.Geoeral Systems Yearbook,1961,6:139-187 [24]Vijay K. Gupta.Statistical self-similarity in river networks parameterized by elevation.Water Resources Research, 1989,25:463-476 [25]Shreve Ronald L.Infinite Topologically Random Channel Networks.The Journal of Geology, 1967,75:178-186 [26]Snow, R. Scott.Fractal sinuosity of stream channels.Pure and Applied Geophysics PAGEOPH, 1989,131(1-2):99-109 [27]J. T. Hack.Studies of longitudinal profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 1957,294-B:45- 97 [28] B. Mandelbrot.The Fractal Geometry of Nature.Freeman,1982 [29]A T Hjelmfelt. Fractals and the River--Length Catchment Area ratio .Water Resources Bulletin, 1988, 24(2) :455-459 [30]G.E.McDermott,D.H.Pilgrim.Design flood estimation for small catchments in New South Wales.Australian Water Resources Council,Australian Government Publishing Service cat. no. 8218579. [31]A Robert and A G Roy. On the Fractal Interpretation of the Main--Stream Length--Drainage Area Relationship .Water Resources Research, 1990, 26(9) :839-842 [32]承继成,江美球.流域地貌学模型.科学出版社,1986 [33]J Feder.Fractals.New York and London,1988 [34]P L Barbera and R Rosso. On the Fractal Dimension of Stream Networks .Water Resource Research, 1989, 25(4) :735-741 . [35]洪时中,洪时明. 地学领域中的分维研究水系、地震及其它[J]. 大自然探索, 1988,(2) . [36]Juan M. García-Ruiz and Fermín Otálora.Fractal trees and Horton's laws.Mathematical Geology,1992,24(1) [37]Michael F Barnsley.Fractals Everywhere.Academic press boston,1988:394 [38]D G Tarboton,R L Bras and I R Iturbe. The Fractal Nature of River Networks .Water Resources Research, 1988, 24(8) :1317-1322 [39]L E Band. Topographic partition of watersheds with digital elevation models .Water Resour Res, 1986, 22(1) :15-24 [40]David G. Tarboton, Rafael L. Bras, Ignacio Rodriguez-Iturbe.Comment on “On the fractal dimension of stream networks” by. P. La Barbera and R. Rosso, Water Resour. Res., 1996,26, 2243-2244. [41]P L Barbera and R Rosso.Reply.Water resources research,1990,26(9):2245-2248 [42]R Rosso,B Bacchi and P L Barbera. Fractal Relation of Mainstream Length to Catchment Area in River Networks .Water Resources Research, 1991, 27(3) :381-387 . [43]V I Nikora. Fractal Structures of River Plan Forms .Water Resources Research, 1991, 27(6) :1327-1333 [44]李后强,艾南山. 分形地貌学及地貌发育的分形模型[J]. 自然杂志, 1992,15(7):516-519. [45]A Robert. Statistical Properties of Sediment Bed Frofiles in Alluvial Channels .Mathematical Geology, 1988, 20(3) :205-225 [46]A Robert. Fractal Properties of Simulated Bed Profiles in Coarse--Grained Channels .Mathematical Geology, 1991, 23(3) :367-382 [47]Georges Matheron.Les variables régionalisées et leur estimation.Pairs,1965:305 [48]C P Stark. An invasion percolation model of drainage network evolution .Nature, 1991, 352 :423-425 [49]L E Gilbert.Are topographic data sets fractal?Pure and Applied Geophysics,1989,131(1-2) |