地球科学进展 ›› 2009, Vol. 24 ›› Issue (11): 1210 -1218. doi: 10.11867/j.issn.1001-8166.2009.11.1210

综述与评述 上一篇    下一篇

南极冰盖研究最新进展
唐学远 1,2,孙波 2,李院生 2,崔祥斌 2,李鑫 2   
  1. 1. 中国海洋大学海洋环境学院,山东青岛266100;
    2. 中国极地研究中心,上海200136
  • 收稿日期:2009-04-27 修回日期:2009-10-19 出版日期:2009-11-10
  • 通讯作者: 唐学远(1978-),男,广西灌阳人,助理研究员,主要从事极地冰冻圈数值模拟和冰川物理学研究.  E-mail:tangxueyuan@pric.gov.cn
  • 基金资助:

    国家自然科学青年基金项目“东南极Dome A(昆仑站)冰层深度—年代关系的数值模拟研究”(编号:40906101);国家自然科学基金项目“东南极Dome A地区雷达冰层二维结构、层序年代与过去10万年积累率重建”(编号:40476005) ;中国极地战略研究基金项目“东南极冰盖Dome A地区深度—年代关系模拟研究:寻找南极最古老冰芯记录储藏地点的一个方法”(编号:20070215)资助.

Some Recent Progress of Antarctic Ice Sheet Research

TANG Xueyuan 1,2,SUN Bo 2,LI Yuansheng 2,CUI Xiangbin 2,LI Xin 2   

  1. 1. College of Marine Environment,Ocean University of China, Qingdao266100,China;
    2.Polar Research Institute of China,Shanghai200136,China
  • Received:2009-04-27 Revised:2009-10-19 Online:2009-11-10 Published:2009-11-10

南极冰盖是地球系统的重要组成部分,在全球气候系统中扮演着重要角色。通过对南极冰盖的研究将有助于了解其在全球气候系统中的作用,并为探讨全球气候过去、现在以及未来的演化提供支撑。总结分析了近年来南极冰盖研究的一些重要进展,并在此基础上对南极冰盖研究领域的一些主要结果、观测事实以及未来变化展开讨论,重点介绍南极物质平衡、冰芯研究、冰下水系统、冰盖数值模拟方面最近的进展,评述未来可能的研究方向和应该关注的问题。

Antarctic ice sheet ,as an important part of the Earth system, plays a critical role in the global climate change.The understanding of the Antarctic ice sheet will help in making sense of the global climate system, and support exploring the evolution of the global climate in the past, present and the future. By analysing the significant progress of Antarctic ice sheet research in recent years, on the basis of these major findings, observations, as well as the fact that future changes in the discussions,some recent progress is focused, including mass balance, ice cores,subglacial lakes and water system, numerical model of Antarctic ice sheet. Review of the possible future research directions should also be of concern.

中图分类号: 


[1] Ren Jiawen,Qin Dahe. Antarctic glaciology and its significance
[C]Qin Dahe, Ren Jiawen, eds. Antarctic Glaciology.Beijing:Sciense Press,2001:2-3.
[任贾文,秦大河, 南极冰川学及其意义
[C]秦大河,任贾文,主编. 南极冰川学.北京:科学出版社, 2001:2-3.]

[2] Zachos J C, Breza J, Wise S W. Early Oligocene ice sheet expansion on Antarctica, sedimentological and isotopic evidence from the Kergulen Plateau
[J].Geology, 1992,20:569-573.

[3] Pagani M, Zachos J C, Freeman K H,et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene
[J].Science,2005, 309:600-603.

[4] Sun Bo, Martin S, Simon M M, David S, et al. The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet
[J].Nature, 2009, 459:690-693.

[5] Huybrechts P. Antarctica:Modeling
[C]∥Bamber J L , Payne A J,eds. Mass Balance of the Cryosphere: Observations and Modelling of  Contemporary and Future Changes. Cambridge:Cambridge University Press,2004: 491-523.

[6] Qin Dahe,Xiao Cunde,Ding Yongjian,et al.Progress on cryospheric studies by international and Chinese Comm unities and perspectives
[J].Journal of Applied Meteorological Science, 2006,17(6):649-656.
[秦大河,效存德,丁永建,等. 国际南极冰盖研究动态和我国南极冰盖研究的现状与展望
[J].应用气象学报,2006,17(6):649-656.]

[7] Zwally H J, Schutz B, Abdalati W, et al. ICESat′s laser measurements of Polar ice,atmosphere,ocean and land
[J].Journal of Geodynamics,2002,34(3/4):405-445.

[8] VLythe M B, Vaughan D G. The BEDMAP consortium. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica
[J].Journal of Geophysical Research-Solid Earth, 2001,106:11 335-11 351.

[9] Arthern R J, Winebrenner D P, Vaughan D G. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission
[J].Journal of Geophysics Research, 2006,111, D06107, doi:10.1029/2004JD005667.

[10] Rippin D M, Bamber J L, Siegert M J,et al. The role of ice thickness and bed properties on the dynamics of the enhanced-flow tributaries of Bailey Ice Stream and Slessor Glacier, East Antarctica
[J].Annals of Glaciology, 2004,39:366-372.

[11] Rignot  E, Bamber J L, van den Broeke M R, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling
[J]. Nature Geoscience,2008, 1:106 110, doi:10.1038/ngeo102.

[12] Davis C H, Li Y, McConnell J R, et al. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise
[J].Science,2005, 308:1 898-1 901.

[13] Zwally H J, Giovinetto M B, Li J, Cornejo H G, et al. Masschanges of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002
[J]. Journal of Glaciology,2005,51(175): 509-527.

[14] Wingham D J, Shepherd A, Muir A, et al. Mass balance of the Antarctic ice sheet
[J].Philosophical Transactions of the Royal Society of London, Series A, 2006,364:1 627-1 635.

[15] Van den Broeke M R, van de Berg W J, van Meijgaard E.Snowfall in coastal West Antarctica much greater than previously assumed
[J].Geophysical Research Letters, 2006,33,L02505,doi:10.1029/2005GL025239.

[16] van de Berg W J, Van den Broeke M R, van Meijgaard E, et al. Characteristics of the Antarctic surface mass balance (1958-2002) using a regional atmospheric climate model
[J].Annals of Glaciology,2005,41:97-104.

[17] Monaghan A J,Bromwich D H,Fogt R L,et al. Insignificant change in Antarctic snowfall since the International Geophysical Year
[J].Science,2006,313:827-831.

[18] Shepherd A, Wingham D J. Recent sea-level contributions of the Antarctic and Greenland ice sheets
[J].Science,2007,315(5 818):1 529-1 532.

[19] Rignot E, Thomas R H. Mass balance of polar ice sheets
[J].Science, 2002,297(5 586): 1 502-1 506.

[20] Shepherd A, Wingham D J, Mansley A D. Inland thinning of the Amundsen Sea sector,West Antarctica
[J].Geophysical Research Letters,2002,29(10):1 364.

[21] Thomas R H, Rignot E, Casassa G,et al. Accelerated sea-level rise from West Antarctica
[J].Science,2004,306:255-258.

[22] Holt J W, Blankenship D D, Morse D L, et al. New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments
[J].Geophysical Research Letters, 2006,33,L09502, doi:10.1029/2005GL025561.

[23] Vaughan D G, Corr H F J, Ferraccioli F, et al. New boundary conditions for the West Antarctic ice sheet: Subglacial topography beneath Pine Island Glacier
[J]. Geophysical Research Letters, 2006, 33, L09501, doi:10.1029/2005GL025588.

[24] Payne A J, Vieli A, Shepherd A P,et al. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans
[J]. Geophysical Research Letters,2004,31, L23401, doi: 10.1029/2004GL02184.

[25] Hamilton G S, Spikes V B, Stearns L A. Spatial patterns in mass balance of the Siple Coast and Amundsen Sea sectors
[J].West Antarctica, Annals of Glaciology,2005, 41:105-110.

[26] Ren Jiawen,Qin Dahe,Xiao Cunde,et al. East Antarctica lambert glacier basin and mass balance of antarctic ice sheet on the impact of sea level
[C]Chen Liqi,eds. Antarctic Region in Response to Global Change and Feedback Research.Beijing:Ocean Press, 2004:408-420.
[任贾文,秦大河,效存德,等.东南极兰伯特冰川流域物质平衡与南极冰盖对海平面的影响
[C]陈立奇主编.南极地区对全球变化的响应与反馈作用研究.北京:海洋出版社,2004:408-420.]

[27] Hou Shugui, Li Yuansheng,Xiao Cunde,et al. Recent accumulation rate at Dome A, Antarctica
[J].Chinese Science Bulletin,2007,52(2):243-245.
[候书贵,李院生,效存德,等.Dome A地区的近期积累率
[J].科学通报,2007,52(2):243-245.]

[28] Xiao Cunde,Li Yuansheng,Hou Shugui,et al. Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core
[J].Chinese Science Bulletin,2007,52(20):2 456-2 460.
[效存德,李院生,候书贵,等.南极冰盖最高点满足钻取最古老冰芯的必要条件:Dome A最新实测结果
[J]. 科学通报,2007,52(20):2 456-2 460.]

[29] Siegert M J. Glacial-interglacial variations in central East Antarctic ice accumulation rates
[J].Quaternary Science Review,2003,22(5):741-750.

[30] Wang Shaowu. Glacial-Interglacial cycles
[J]. Advances in Climate Change Research, 2008,4(1):61-62.
[王绍武,冰期—间冰期旋回
[J].气候变化研究进展
[J].2008,4(1):61-62.]

[31] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core Antarctica
[J]. Nature,1999,399: 429-436.

[32] Watanabe O, Jouzel J,Johnsen S, et al. Homogeneous climate variability across East Antarctica over the past three glacial cycles
[J].Nature,2003,422: 509-512.

[33] EPICA Community Members. Eight glacial cycles from an Antarctic ice core
[J].Nature,2004,429:623-628.

[34] Jouzel J, Masson-Delmotte V, Cattani O,et al. Orbital and millennial Antarctic climate variability over the last 800 000 years
[J].Science,2007,317:793-796.

[35] Kawamura K, Parrenin F,Uemura R,et al. Northern Hemisphere forcing of climatic cycles over the past 360 000 years implied by accurately dated Antarctic ice cores
[J].Nature,2006,448:912-916.

[36] Hays J D, John Imbrie J,Shackleton N J. Variations in the earth's orbit: Pacemaker of the ice ages
[J].Science, 1976,194:1121-1132.

[37] EPICA Community Members. One-to-one hemispheric coupling of millennial polar climate variability during the last glacial
[J]. Nature,2006,444: 195-198.

[38] Oleg  R, Huybrechts P. A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models
[J].Annals of Glaciology,2003,37:150-158.

[39] Pattyn F. Investigating the stability of subglacial lakes with a full Stokes ice-sheet model
[J].Journal of Glaciology,2008,54(185):353-361.

[40] Siegert M J, Carter S, Tabacco I, et al. A revised inventory of Antarctic subglacial lakes
[J].Antarctic Science, 2005,17: 453-460.

[41] Siegert M J, Le Brock A, Payne A J. Hydrological connections between Antarctic subglacial lakes,the flow of water beneath the East Antarctic Ice Sheet and implications of sedimentary processes
[C]Hambrey M J, Christoffersen P, Glasser N F, eds. Glacial Sedimentary Processes and Products.Oxford: Blackwell Publishing, 2007:3-10.

[42] Siegert M J , Ellis-Evans J C, Tranter M, et al. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes
[J].Nature,2001,414: 603-609.

[43] Wingham  D J, Siegert M J , Shepherd A, et al. Rapid discharge connects Antarctic subglacial lakes
[J].Nature,2006,440:1 033-1 036.

[44] Fricker H A, Scambos T, Bindschadler R, et al. An active subglacial water system in West Antarctica mapped from space
[J].Science,2007,315:1 544-1 548.

[45] Bell R E, Studinger M, Shuman C A, et al. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams
[J].Nature,2007,445:904-907.

[46] Lewis  A R, Marchant  D R, Kowalewski D E,et al. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean
[J].Geology, 2006,34:513-516.

[47] Hindmarsh R C. A numerical comparison of approximations to the Stokes equations used in ice-sheet and glacier modeling
[J].Journal of Geophysical Research,2004,109, F01012, doi: 10.1029/2003JF000065.

[48] Van der Veen C J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers
[J].Geophysical Research Letters,2007,34, L01501, doi:10.1029/2006GL028385.

[49] Huybrechts P, De Wolde J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming
[J].Journal of Climate,1999, 12:2 169-2 188.

[50] Monaghan A J, Bromwich  D H, Fogt R L, et al. Insignificant change in Antarctic snowfall since the International Geophysical Year
[J].Science,2006,313:827-83

[51] Frezzotti M, Urbini S, Proposito M, et al. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
[J].Journal of Geophysical Research,2007,112, F02032, doi:10.1029/2006JF000638.

[52] Frezzotti M, Pourchet M,Flora O. Spatial and temporal variability of snow accumulation in East Antarctica from traverse data
[J].Journal of Glaciology,2005,51:113-124

[53] Magand O C, Genthon M F,Krinner G,et al. An up-to-date quality-controlled surface mass balance data set for the 90~180°E Antarctica sector and 1950-2005 period
[J].Journal of Geophysical Research,2007,112, D12106, doi: 10.1029/2006JD007691.

[54] Krinner  G, Magand O C, Simmonds I, et al. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries
[J].Climate Dynamics,2007,28:215-230.

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[5] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[6] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[7] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[8] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[9] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[10] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[11] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[12] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[13] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[14] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[15] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
阅读次数
全文


摘要