Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (2): 161-170    DOI: 10.11867/j.issn.1001-8166.2016.02.0161
综述与评述     
极地冰芯电学性质及导电测量技术研究进展
马天鸣1,2,谢周清1,李院生2*
1.中国科学技术大学地球和空间科学学院,安徽 合肥 230026;
2.中国极地研究中心冰川室,上海 200136
Research Progress on Electrical Properties and Conductivity Measurement Technology of Ice Core
Ma Tianming1,2, Xie Zhouqing1, Li Yuansheng2*
1.The School of Earth and Space Science, University of Science and Technology of China, Hefei 230026,China;
2.Polar Research Institute of China, Shanghai 200136, China
 全文: PDF(3003 KB)   HTML
摘要: 冰芯是全球气候变化研究的重要对象,通过物理和化学手段可提取其中的古气候信息。作为物理分析技术之一,冰芯导电测量技术可分为ECM和DEP 2类,已运用到多个冰芯项目中。其主要反映了冰芯电学性质受温度、压力、杂质等因素影响而产生的变化,而导致这些变化的原因可从宏观和微观方面进行解释和探究。冰芯导电测量获得的结果可应用于定年、火山事件、积累率、生物质燃烧、离子浓度恢复等多领域研究,对帮助系统认识第四纪晚更新世以来的南极气候演变过程具有重要意义。通过详细总结极地冰芯导电性质及测量技术的主要研究成果,探讨了该技术在中国Dome A深冰芯项目中的应用前景。
关键词: 导电测量技术 DEP冰芯ECM 古气候    
Abstract: Ice core is an important object of the global climate change research, and can extract paleoclimate information by physical and chemical methods. As one of the major physical analysis technology, conductivity measurement technology mainly contains two methods and has been applied to many drilling project. The technology reflects the ice core electrical properties influenced by factors such as temperature, pressure, impurities and changes, and the cause of these changes can be explained from the aspects of macroscopic and microscopic. What obtained from measurement can be used to the research of dating, volcanic events, accumulation rate, biomass burning, ion concentration recovery, which systematically help us to understand the quaternary evolution of Antarctic climate since late pleistocene. This paper summarized in detail the main research achievements on electrical properties and dielectric measurement technology of ice core, and also discussed the prospect of the technology in China deep ice core project further.
Key words: Conductivity measurement technology    DEP    ECM    Paleoclimate.    Ice core
收稿日期: 2015-12-21 出版日期: 2016-02-10
:  P343.6  
基金资助: 国家高技术研究发展计划“冰架热水钻机关键技术与系统开发”(编号:2011AA090401);南北极环境综合与考察专项(2015年度)“2015年度冰盖断面及格罗夫山综合考察与冰穹A深冰芯钻探”(编号:CHINARE2015-02-02)资助.
通讯作者: 李院生(1956-),男,内蒙古包头人,研究员,主要从事南极冰川学研究.E-mail:liyuansheng@pric.org.cn   
作者简介: 马天鸣(1990-),男,辽宁锦州人,硕士研究生,主要从事南极冰盖雪冰化学分析研究.E-mail:matianming@pric.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢周清
马天鸣
李院生

引用本文:

马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.

Ma Tianming, Xie Zhouqing, Li Yuansheng. Research Progress on Electrical Properties and Conductivity Measurement Technology of Ice Core. Advances in Earth Science, 2016, 31(2): 161-170.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.02.0161        http://www.adearth.ac.cn/CN/Y2016/V31/I2/161

[1] Wei Lijia, Li Yuansheng, Tan Dejun, et al. Reveiw of research on insoluble microparticles in the polar cores[J].Advances in Earth Science,2005, 20(2):216-222.[韦丽佳, 李院生, 谭德军, 等. 极地冰芯不溶性微粒研究进展[J]. 地球科学进展, 2005, 20(2): 216-222.]
[2] Sun Bo, Yao Tandong, Kang Jiancheng, et al. Solid electrical conductivity measurement of polar ice cores and its environmental significance[J].Chinese Journal of Polar Research,1998, 10(3): 235-240.[孙波, 姚檀栋, 康建成, 等. 极地冰芯固体直流导电特性检测 (ECM) 及环境意义[J]. 极地研究, 1998, 10(3): 235-240.]
[3] Eigen M, Maeyer L D. Self-dissociation and protonic charge transport in water and ice[J].Proceedings of the Royal Society A,1958, 247(1 251): 505-533.
[4] Chai S Y, Vogelhut P O. Activation energy of direct-current electrical conductivity of ice with HF and NH3 added[J]. Science,1965, 148(3 677): 1 595-1 598.
[5] Takei I, Maeno N. Electric characteristics of point defects in HCl-doped ice[J].Le Journal de Physique Colloques,1987, 48(C1): C1-121-C1-126.
[6] Hammer C U. Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes[J].Journal of Glaciology,1980, 25(93): 359-372.
[7] Moore J C, Paren J G. A new technique for dielectric logging of Antarctic ice cores[J]. Le Journal de Physique Colloques,1987, 48(C1): C1-155-C1-160.
[8] Yang Jianping, Ding Yongjian, Fang Yiping, et al. Research frame of vulnerability and adaptation for the cryosphere and its changes[J]. Advances in Earth Science,2015, 30(5): 517-529.[杨建平, 丁永建, 方一平, 等. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.]
[9] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J].Advances in Earth Science,2014, 29(1): 15-22.[吴国雄, 林海, 邹晓蕾, 等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.]
[10] Brook E J, Wolff E, Dahl-Jensen D, et al. The future of ice coring: International Partnerships in Ice Core Sciences (IPICS)[J]. PAGES News,2006, 14(1): 6-10.
[11] Taylor K C, Alley R B, Lamorey G W, et al. Electrical measurements on the Greenland Ice Sheet Project 2 core[J]. Journal of Geophysical Research:Oceans,1997, 102(C12): 26,511.
[12] Taylor K C, Hammer C U, Alley R B, et al. Electrical conductivity measurements from the GISP 2 and GRIP Greenland ice cores[J].Nature, 1993, 366(6 455): 549-552.
[13] Rasmussen S O, Abbott P M, Blunier T, et al. A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core[J]. Climate of the Past, 2013, 9(6): 2 713-2 730.
[14] Hammer C U, Clausen H B, Langway Jr C C. The Byrd ice core: Continuous acidity measurements and solid electrical conductivity measurements[J].Annals of Glaciology,1985, 7: 214.
[15] Hamer C U, Clausen H B, Langway C C. Electrical Conductivity Method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica[J]. Annals of Glaciology,1994, 20(1): 115-120.
[16] King M R. Fractal analysis of eight glacial cycles from an Antarctic ice core[J].Chaos, Solitons & Fractals,2005, 25(1): 5-10.
[17] Wolff E, Basile I, Petit J R, et al. Comparison of Holocene electrical records from Dome C and Vostok, Antarctica[J]. Annals of Glaciology,1999, 29(1): 89-93.
[18] Hondoh T, Narita H, Hori A, et al. Basic analyses of Dome Fuji deep ice core Part 2: Physical properties[J].Polar Meteorology & Glaciology,1999, 13: 90-98.
[19] Hondoh T, Narita H, Hori A, et al. Physical properties of the Dome Fuji deep ice core[J].Memoirs of National Institute of Polar Research Special Issue,2003, 57: 63-71.
[20] Fitzpatrick J J, Voigt D E, Fegyveresi J M, et al. Physical properties of the WAIS Divide ice core[J].Journal of Glaciology,2014, 60(224): 1 181.
[21] Ramirez E, Hoffmann G, Taupin J D, et al. A new Andean deep ice core from Nevado Illimani (6 350 m), Bolivia[J].Earth and Planetary Science Letters,2003, 212(3): 337-350.
[22] Taylor K C, Alley R B, Meese D A, et al. Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering[J].Journal of Glaciology, 2004, 50(170): 453-461.
[23] Sugiyama K, Fujita S, Sueoka S, et al.Preliminary measurement of high-frequency electrical conductivity of Antarctic ice with AC-ECM technique[J].Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology,1995, 9: 12-22.
[24] Sugiyama K, Fujita S, Narita H, et al.Measurement of electrical conductance in ice cores by AC-ECM method[C]∥International Symposium on Physics of Ice Core Records. Shikotsukohan, Hokkaido, Japan:Hokkaido University Press, 2000.
[25] Wolff E W, Paren J G. A two-phase model of electrical conduction in polar ice sheets[J].Journal of Geophysical Research: Solid Earth (1978-2012),1984, 89(B11): 9 433-9 438.
[26] Wilhelms F, Kipfstuhl J, Miller H, et al. Precise dielectric profiling of ice cores: A new device with improved guarding and its theory[J].Journal of Glaciology,1998, 44(146): 171-174.
[27] Mulvaney R. Ice core methods, conductivity studies[M]∥Scott Elias A, ed. Encyclopedia of Quaternary Science.Netherlands:Elsevier,2013.
[28] Moore J C. High-resolution dielectric profiling of ice cores[J].Journal of Glaciology,1993, 39(132): 245-248.
[29] Bohleber P, Hackel M, Eisen O, et al. A multi-method approach to the dielectric properties of natural firn and ice at kHZ-and radio frequencies[C]∥13th International Conference on the Physics and Chemistry of Ice (PCI-2014). Hanover, NH: ACS Publications, 2014.
[30] Fujita S, Azuma N, Motoyama H, et al. Electrical measurements on the 2503 m Dome F Antarctic ice core[J]. Annals of Glaciology,2002, 35(1): 313-320.
[31] Wolff E. Electrical stratigraphy of polar ice cores: Principles, methods[M]∥Hondoh T, ed.Physics of Ice Core Records. Sapporo: Hokkaido University Press,2000:155-171.
[32] Grimm R E, Stillman D E, MacGregor J A. Dielectric signatures and evolution of glacier ice[J].Journal of Glaciology,2015, 61(230): 1 159-1 170.
[33] Hochstein M. Electrical resistivity measurements on ice sheets[J].Journal of Glaciology,1967, 6(47):623-633.
[34] Kulessa B. A critical review of the low-frequency electrical properties of ice sheets and glaciers[J]. Journal of Environmental & Engineering Geophysics,2007, 12(1): 23-36.
[35] Taylor K, Alley R, Fiacco J, et al. Ice-core dating and chemistry by direct-current electrical conductivity[J]. Journal of Glaciology,1992, 38(130): 325.
[36] Chan R K, Davidson D W, Whalley E. Effect of pressure on the dielectric properties of ice I[J]. The Journal of Chemical Physics,1965, 43(7): 2 376-2 383.
[37] Barnes P R F, Wolff E W, Mulvaney R, et al. Effect of density on electrical conductivity of chemically laden polar ice[J]. Journal of Geophysical Research: Solid Earth (1978-2012),2002, 107(B2): ESE 1-1-ESE 1-14.
[38] Eisen O, Bohleber P, Heilig A, et al. Dielectric Properties of Snow and Ice in the MHz-range, ISEMA International Conference on electromagnetic Wave interaction With water and Moist Substances, Bauhaus University, 2013[C].Weimar: Bauhaus University Press, 2013.
[39] Shabtaie S, Bentley C R. Electrical resistivity sounding of the East Antarctic ice sheet[J].Journal of Geophysical Research: Solid Earth (1978-2012),1995, 100(B2): 1 933-1 954.
[40] Wolff E W. Comment [on “Electrical resistivity sounding of the East Antarctic ice sheet” by Sion Shabtaie and Charles R. Bentley][J]. Journal of Geophysical Research: Solid Earth,1996, 101(B12): 27 735-27 737.
[41] Grnicher H, Jaccard C, Scherrer P, et al. Dielectric relaxation and the electrical conductivity of ice crystals[J]. Discussions of the Faraday Society,1957, 23: 50-62,doi:10.1039/DF9572300050.
[42] Schwander J, Neftel A, Oeschger H, et al. Measurement of direct current conductivity on ice samples for climatological applications[J].The Journal of Physical Chemistry,1983, 87(21): 4 157-4 160.
[43] West L J, Rippin D M, Murray T, et al. Dielectric permittivity measurements on ice cores: Implications for interpretation of radar to yield glacial unfrozen water content[J]. Journal of Environmental & Engineering Geophysics,2007, 12(1): 37-45.
[44] Moore J C, Mulvaney R, Paren J G. Dielectric stratigraphy of ice: A new technique for determining total ionic concentrations in polar ice cores[J].Geophysical Research Letters,1989, 16(10): 1 177-1 180.
[45] Moore J C, Wolff E W, Clausen H B, et al. Electrical response of the Summit-Greenland ice core to ammonium, sulphuric acid, and hydrochloric acid[J].Geophysical Research Letters,1994, 21(7): 565-568.
[46] Wolff E W, Miners W D, Moore J C, et al. Factors controlling the electrical conductivity of ice from the polar regions a summary[J].The Journal of Physical Chemistry B,1997, 101(32): 6 090-6 094.
[47] Hammer C U. Initial direct current in the buildup of space charges and the acidity of ice cores[J].The Journal of Physical Chemistry,1983, 87(21): 4 099-4 103.
[48] Tison J L, Souchez R, Wolff E W, et al. Is a periglacial biota responsible for enhanced dielectric response in basal ice from the Greenland Ice Core Project ice core?[J].Journal of Geophysical Research: Atmospheres (1984-2012),1998, 103(D15): 18 885-18 894.
[49] Stillman D E, MacGREGOR J A, Grimm R E. Electrical response of ammonium-rich water ice[J]. Annals of Glaciology,2013, 54(64): 21-26.
[50] Moore J C, Reid A P, Kipfstuhl J. Microstructure and electrical properties of marine ice and its relationship to meteoric ice and sea ice[J].Journal of Geophysical Research: Oceans (1978-2012),1994, 99(C3): 5 171-5 180.
[51] Moore J, Paren J, Oerter H. Sea salt dependent electrical conduction in polar ice[J].Journal of Geophysical Research: Solid Earth (1978-2012),1992, 97(B13): 19 803-19 812.
[52] Legrand M, Petit J R, Korotkevich Y S. DC conductivity of Antarctic ice in relation to its chemistry[J]. Le Journal de Physique Colloques,1987, 48(C1): C1-605-C1-611.
[53] Wolff E W, Moore J C, Clausen H B, et al. Long-term changes in the acid and salt concentrations of the Greenland ice core project ice core from electrical stratigraphy[J].Journal of Geophysical Research: Atmospheres (1984-2012),1995, 100(D8): 16 249-16 263.
[54] Arvaniti M, Vallelonga P. Application of Contactless Conductivity Detection to Ice Core Analysis[D].Denmark:University of Copenhagen,2014.
[55] Jaccard J, Jacoby J. Theory Construction and Model-building Skills: A Practical Guide for Social Scientists[M].New York:Guilford Press, 2010.
[56] Ryzhkin I A, Whitworth R W. The configurational entropy in the Jaccard theory of the electrical properties of ice[J].Journal of Physics: Condensed Matter, 1997, 9(2): 395.
[57] Maurice D A, Alex A, Silva A J R D, et al. Orientational defects in ice Ih: An interpretation of electrical conductivity measurements[J]. Physical Review Letters, 2006, 96(7):1-5.
[58] Stillman D E, MacGregor J A, Grimm R E. The role of acids in electrical conduction through ice[J]. Journal of Geophysical Research: Earth Surface,2013, 118(1): 1-16.
[59] Mader H M. Observations of the water-vein system in polycrystalline ice[J].Journal of Glaciology,1992, 38(130): 333-347.
[60] Gow A J, Williamson T. Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station[J]. Geological Society of America Bulletin,1976, 87(12): 1 665-1 677.
[61] Naveau P, Ammann C M. Statistical distributions of ice core sulfate from climatically relevant volcanic eruptions[J]. Geophysical Research Letters,2005, 32(5):215-236.
[62] Zheng J, Kudo A, Fisher D A, et al. Solid electrical conductivity (ECM) from four Agassiz ice cores, Ellesmere Island NWT, Canada: High-resolution signal and noise over the last millennium and low resolution over the Holocene[J]. The Holocene,1998, 8(4): 413-421.
[63] Liu L, Kang J, Petit J R, et al. The 4700 aB. P. volcanic signal detected in Vostok BH8 ice core, Antarctica[J]. Chinese Science Bulletin,2005, 50(22): 2 636-2 639.
[64] Parrenin F, Petit J R, Masson-Delmotte V, et al. Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0-145 kyr BP[J]. Climate of the Past,2012, 8(3): 1 031-1 045.
[65] Wolff E W. Chemical signals of past climate and environment from polar ice cores and firn air[J]. Chemical Society Reviews,2012, 41(19): 6 247-6 258.
[66] Looyenga H. Dielectric constants of heterogeneous mixtures[J].Physica,1965, 31(3): 401-406.
[67] Glen J W, Paren J G. The electrical properties of snow and ice[J].Journal of Glaciology,1975, 15: 15-38.
[68] Karlf L, Winther J G, Isaksson E, et al. A 1500 year record of accumulation at Amundsenisen western Dronning Maud Land, Antarctica, derived from electrical and radioactive measurements on a 120 m ice core[J]. Journal of Geophysical Research: Atmospheres (1984-2012),2000, 105(D10): 12 471-12 483.
[69] Oerter H, Wilhelms F, Jung-Rothenhusler F, et al. Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores[J]. Annals of Glaciology,2000, 30(1): 27-34.
[70] Oerter H, Graf W, Wilhelms F, et al. Accumulation studies on Amundsenisen, Dronning Maud Land, Antarctica, by means of tritium, dielectric profiling and stable-isotope measurements: First results from the 1995-1996 and 1996-1997 field seasons[J].Annals of Glaciology,1999, 29(1): 1-9.
[71] Hofstede C M, Van De Wal R S W, Kaspers K A, et al. Firn accumulation records for the past 1000 years on the basis of dielectric profiling of six cores from Dronning Maud Land, Antarctica[J]. Journal of Glaciology,2004, 50(169): 279-291.
[72] Wilhelms F. Explaining the dielectric properties of firn as a Density-and-Conductivity Mixed Permittivity (DECOMP)[J]. Geophysical Research Letters,2002,44(1):150-153.
[73] You Chao, Yao Tandong, Wu Guangjian.Research progress on biomass burning records in snow and ice[J]. Advances in Earth Science,2014, 29(6): 662-673.[游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.]
[74] Chylek P, Johnson B, Damiano P A, et al. Biomass burning record and black carbon in the GISP2 ice core[J]. Geophysical Research Letters,1995, 22(2): 89-92.
[75] Taylor K C, Mayewski P A, Twickler M S, et al. Biomass burning recorded in the GISP2 ice core: A record from eastern Canada?[J]. The Holocene,1996, 6(1): 1-6.
[76] Moore J C, Paren J G, Mulvaney R. Chemical evidence in polar ice cores from dielectric profiling[J]. Annals of Glaciology,1990, 14: 195-198.
[77] Barker S. The ‘flickering switch’of late Pleistocene climate change revisited[J].Geophysical research letters,2005, 32(24):1-4.
[78] Moore J C, Wolff E W, Clausen H B, et al. The chemical basis for the electrical stratigraphy of ice[J]. Journal of Geophysical Research,1992, 97(B2): 1 887-1 896.
[79] Wolff E W, Moore J C, Clausen H B, et al. Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core[J]. Journal of Geophysical Research-All Series, 1997, 102: 26 325-26 332.
[80] Tang Xueyuan, Sun Bo, Li Yuansheng,et al.Review of the glaciological research progress and future development of deep ice core plan[J]. Chinese Journal of Polar Research,2012,24(1):77-86.[唐学远, 孙波, 李院生, 等. 冰穹 A 冰川学研究进展及深冰芯计划展望[J]. 极地研究, 2012, 24(1): 77-86.]
[1] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[2] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[3] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[4] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[5] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[6] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[7] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[8] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 刘佳,张廷军. 利用钻孔温度梯度重建过去气候变化进展[J]. 地球科学进展, 2013, 28(4): 429-446.
[11] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
[12] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[13] 戴静,孙柏年,解三平,吴靖宇,李娜. 云南腾冲上新统Carpinus miofangiana的发现及古气候意义[J]. 地球科学进展, 2009, 24(9): 1024-1032.
[14] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[15] 王红丽,顾亚进,刘健,况雪源,提汝媛 . BP神经网络在古气候序列重建中的应用[J]. 地球科学进展, 2009, 24(11): 1275-1279.