地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 319 -330. doi: 10.11867/j.issn.1001-8166.2020.025

青藏高原综合科学考察研究 上一篇    

区域气候模式 CWRF对东亚冬季风气候特征的模拟
王冰笛 1, 2( ),李清泉 1, 2,沈新勇 1, 3( ),董李丽 2,汪方 1, 2,王涛 4,梁信忠 5   
  1. 1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    2.国家气候中心/中国气象局气候研究开放实验室,北京 100081
    3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
    4.沈阳区域气候中心,辽宁 沈阳 110166
    5.Earth System Science Interdisciplinary Center, University of Maryland, MD, USA 207 42
  • 收稿日期:2020-01-18 修回日期:2020-02-28 出版日期:2020-03-10
  • 通讯作者: 沈新勇 E-mail:shenxy@nuist.edu.cn
  • 基金资助:
    中国科学院战略性先导科技专项子课题“青藏高原热源的长期变化及其与亚非季风系统的关系”(XDA20100304);第二次青藏高原综合科学考察研究专题“亚洲水塔变化及其广域效应”(2019QZKK0208)

Climatological Characteristics of the East Asian Winter Monsoon Simulated by CWRF Regional Climate Model

Bingdi Wang 1, 2( ),Qingquan Li 1, 2,Xinyong Shen 1, 3( ),Lili Dong 2,Fang Wang 1, 2,Tao Wang 4,Xinzhong Liang 5   

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education /Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China
    2.National Climate Center/Climate Research Open Laboratory of China Meteorological Administration,Beijing 100081,China
    3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Guangdong Province, Zhuhai 519082,China
    4.Shenyang Regional Climate Center,Shenyang 110166,China
    5.Earth System Science Interdisciplinary Center, University of Maryland, Maryland 20742,USA
  • Received:2020-01-18 Revised:2020-02-28 Online:2020-03-10 Published:2020-04-10
  • Contact: Shen Xinyong E-mail:shenxy@nuist.edu.cn
  • About author:Wang Bingdi (1995-), female, Xuzhou City, Jiangsu Province, Master student. Research areas include regional climate modeling research. E-mail: 1209596511@qq.com
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Science’s Sub-project “Long-term changes of heat sources over the Qinghai-Tibet Plateau and their relationship with the Asian-African Monsoon System”(XDA20100304);The Second Tibetan Plateau Scientific Expedition and Research Program "The change of Asian water tower and its wide effect"(2019QZKK0208)

利用1979—2016年欧洲中期天气预报中心的ERA-Interim大气再分析资料及美国国家海洋和大气管理局的ERSSTv4海表面温度资料驱动区域气候模式CWRF,对东亚冬季风气候特征进行模拟和评估。结果表明:CWRF模式能够较好地再现东亚冬季风环流的平均特征,包括低层大陆冷高压的位置、中心强度以及高低层风场的变化特征,对北风出现区域和频率的模拟也与再分析资料的结果相符。该模式模拟的中国地区的气温、降水分布与观测基本一致,水汽输送也与再分析资料吻合,来自孟加拉湾的水汽为华南降水所需的水分起着至关重要的作用。对视热源和视水汽汇的模拟结果表明,模式较好地模拟出了东亚大陆与邻近海域的热力差异。分析结果均表明,区域气候模式CWRF具备模拟东亚冬季风主要特征的能力。

Based on the ERA-Interim atmospheric reanalysis data from the European Medium-Term Weather Forecast Center from 1979 to 2016 and the ERSSTv4 sea surface temperature data from the US National Oceanic and Atmospheric Administration, the regional climate model CWRF was used to simulate the climate characteristics in East Asia. The results show that the CWRF model can well reproduce the average characteristics of the East Asian winter monsoon circulation, including the location and intensity of the low-level continental cold high pressure and variation characteristics of wind field in high and low levels. The occurrence area and frequency of the north wind in the simulation and the reanalysis data were further calculated and compared. It is shown that they are basically consistent. The distribution of air temperature and precipitation over China are well represented by the model. The water vapor transport is also in good agreement with the reanalysis data. The water vapor from the Bay of Bengal plays a vital role in the precipitation over South China. The simulation results of apparent heat source and apparent moisture sink show that the model can well simulate the thermal difference between the East Asian continent and the adjacent sea area. The analysis results indicate that CWRF model has the ability to simulate the main characteristics of the East Asian winter monsoon.

中图分类号: 

图1 冬季平均1 000 hPa位势高度和850 hPa温度
(a)模拟;(b)ERA-Interim再分析;阴影填色区为位势高度,单位:gpm;灰色阴影表示地形高度高于2 600 m区域;黑色等值线表示温度,单位:℃,其中虚线表示气温低于0 ℃,实线表示气温等于或高于0 ℃
Fig.1 The mean 1 000 hPa geopotential height and 850 hPa temperature in winter
(a) Simulation; (b) ERA-Interim reanalysis; Color shadow refers to potential height, unit: gpm; Gray shadow refers to terrain height higher than 2 600 m; Black contour refers to temperature, unit: ℃;Dotted line denotes air temperature lower than 0 ℃, and solid line denotes air temperature equal to or higher than 0 ℃
图2 冬季平均模拟结果与ERA-Interim再分析资料的空间相关系数垂直分布
(a)位势高度; (b)气温
Fig.2 Vertical distribution of spatial correlation coefficients between winter average simulation results and ERA-Interim reanalysis data
(a) Geopotential height; (b) Temperature
图3 冬季平均风场
(a)200 hPa的模拟;(b)850 hPa的模拟;(c)200 hPa的ERA-Interim再分析;(d)850 hPa的ERA-Interim再分析;彩色阴影表示风速,单位:m/s;灰色阴影表示地形高度高于2 600 m的区域
Fig.3 Winter mean wind
(a) Simulation at 200 hPa;(b) Simulation at 850 hPa;(c) ERA-Interim reanalysis at 200 hPa;(d) ERA-Interim reanalysis at 850 hPa;Color shadow refers to wind speed,unit: m/s; Gray shadow denotes terrain height higher than 2 600 m
图4 冬季平均整层积分的水汽通量和大小
(a)模拟;(b)ERA-Interim再分析;箭头表示水汽通量,阴影填色区表示水汽通量大小
Fig.4 Winter mean vertically integrated vapor transport and its magnitude
(a) Simulation; (b) ERA-Interim reanalysis; Shadow represents vapor transport magnitude
表1 模拟与 ERA-Interim再分析的东亚冬季风指数
Table 1 The East Asian winter monsoon index of simulation and ERA-Interim reanalysis
表2 模拟与 ERA-Interim再分析的东亚冬季风指数的时间相关系数
Table 2 Temporal correlation coefficient between the East Asian winter monsoon index of simulation and ERA-Interim reanalysis
图5 东亚冬季风指数逐年变化曲线
(a) 偏北季风面积指数;(b) 偏北季风强度指数
Fig.5 Annual evolution curve of the East Asian winter monsoon index
(a) Northern monsoon area index; (b) Northern monsoon intensity index
图6 冬季1 000 hPa偏北风频率分布
(a)模拟;(b)ERA-Interim再分析;阴影填色区表示 v<0 m/s的频率,蓝色等值线表示 v<-5 m/s的频率,单位:%
Fig.6 Distribution of northerly wind frequency at 1 000 hPa in winter
(a) Simulation;(b) ERA-Interim reanalysis;Color shadow represents the frequency of v<0 m/s,blue contour represents the frequency of v<-5 m/s,unit:%
图7 冬季平均气温及模拟与观测的相关系数
(a)模拟气温;(b)观测气温;(c)未去趋势的模拟与观测气温的时间相关系数;(d)去趋势的模拟与观测气温的时间相关系数;(e)模拟和观测的差值场
Fig.7 Winter average surface air temperature and correlation coefficient between simulation and observation
(a) Simulation; (b) Observation; (c) Time correlation coefficient of un-detrended simulation and observed air temperature; (d) Time correlation coefficient of detrended simulation and observed air temperature; (e) Difference between simulation and observation
图8 冬季累积降水量及模拟与观测的相关系数
(a)模拟;(b)观测;(c)未去趋势的模拟与观测降水量的时间相关系数;(d)去趋势的模拟与观测降水量的时间相关系数;(e)模拟和观测的差值场
Fig.8 Winter accumulated precipitation and correlation coefficient between simulation and observation
(a) Simulation; (b) Observation; (c) Time correlation coefficient of un-detrended simulation and observed precipitation; (d) Time correlation coefficient of detrended simulation and observed precipitation; (e) Difference between simulation and observation
图9 < Q 1 >< Q 2 >的空间分布
(a)模拟< Q 1 >;(b)模拟< Q 2 >;(c)ERA-Interim 再分析< Q 1 >;(d)ERA-Interim再分析< Q 2 >
Fig.9 Spatial distribution of < Q 1 > and < Q 2 >
(a) Simulation < Q 1 >; (b) Simulation < Q 2 >; (c) ERA-Interim reanalysis < Q 1 >; (d) ERA-Interim reanalysis < Q 2 >
1 Ding Yihui. Monsoons over China [M]. Netherlands:Springer, 1994.
2 Wang Bin, Wu Renguang, Fu Xiouhua. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?[J].Journal of Climate,2000, 13(9):1 517-1 536.
3 Wang Lin, Chen Wen. How well do existing indices measure the strength of the East Asian winter monsoon?[J]. Advances in Atmospheric Science,2010, 27(4):855-870.
4 Liu Yanzhi, Zuo Ruiting, Peng Jun, et al. Research progress on the change and impact of the East Asian winter monsoon [J]. Science and Fortune, 2011, (1): 91-92.
刘言志,左瑞亭, 彭军, 等. 东亚冬季风的变化及其影响的研究进展[J].科学与财富, 2011, (1):91-92.
5 Chang C P, Lau K M. Northeasterly cold surges and near equatorial disturbances over the winter MONEX area during December 1974, Part II: Planetary-scale aspect [J]. Monthly Weather Review,1980,108(3):298-312.
6 Chang C P, Lau K M. Short-term planetary-scale interactions over the Tropics and midlatitudes during northern winter, Part I: Contrasts between active and inactive periods [J]. Monthly Weather Review, 1982,110(8): 933-946.
7 Ding Yihui, Krishnamurti T N. Heat budget of the siberian high and the winter monsoon [J]. Monthly Weather Review, 1987, 115(10):2 428-2 449.
8 Ding Yihui. A statistical study of winter monsoons in East Asia [J]. Journal of Tropical Meteorology, 1990,6(2):119-128.
9 Liu Shuyan. Application of CWRF in the Monsoon Region of Eastern China [D].Nanjing: Nanjing University of Information Science & Technology, 2006.
刘术艳. CWRF在中国东部季风区的应用[D].南京:南京信息工程大学,2006.
10 Liu Shuyan, Liang Xinzhong, Gao Wei. Application of CWRF in China: Regional optimization [J]. Chinese Atmospheric Science, 2008,32(3/4):457-468.
刘术艳,梁信忠,高炜.气候—天气研究及预报模式(CWRF)在中国的应用:区域优化[J].大气科学,2008,32(3):457-468.
11 Liu Guanzhou, Liang Xinzhong. Progress of the Climate extension of Weather Research and Forecast (CWRF) model application in China[J]. Advances in Earth Science,2017,32(7):781-787.
刘冠州,梁信忠.新一代区域气候模式(CWRF)国内应用进展[J].地球科学进展,2017,32(7):781-787.
12 Giorgi F. Thirty years of regional climate modeling: Where are we and where we are we going next?[J]. Journal of Geophysical Research:Atmospheres, 2019,124(11):5 696-5 723.
13 Li Linchao. Temporal and Spatial Evolution of Extreme Temperature, Precipitation and Drought Events and Its Multi-model Prediction [D]. Yangling: Northwest A&F University, 2019.
李林超. 极端气温、降水和干旱事件的时空演变规律及其多模式预测[D].杨凌:西北农林科技大学,2019.
14 Zhang Yujing. High Resolution Numerical Simulation and Prediction of Precis on Regional Extreme Climate Events in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
张玉静. PRECIS对中国区域极端气候事件的高分辨率数值模拟与预估[D].北京:中国农业科学院,2017.
15 Sun Qingfei. Simulation and Evaluation of the Influence of Mid-high Latitude and Low-latitude Circulation on Summer Precipitation in East China [D]. Nanjing: Nanjing University of Information Science & Technology, 2017[孙庆飞. 中高纬与低纬环流对我国东部夏季降水影响的模拟与评估[D].南京:南京信息工程大学,2017.]
16 Han Zhenyu, Wang Yuxing, Nie Yu. Radiation budget analysis of RegCM4 for regional climate simulation in eastern China [J]. Journal of Atmospheric Science, 2016,39(5): 683-691.
韩振宇,王宇星,聂羽.RegCM4对中国东部区域气候模拟的辐射收支分析[J].大气科学学报,2016,39(5):683-691.
17 Wang Tao, Wang Yishu, Cui Yan, et al. Assessment and prediction of rainfall simulation capacity of three northeastern provinces by climate model [J]. Journal of Meteorology and environment, 2016,32 (5): 52-60.
王涛,王乙舒,崔妍,等.气候模式对东北三省降水模拟能力评估及预估[J].气象与环境学报,2016,32(5):52-60.
18 Ding Y, Liu Y, Shi X, et al. Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC) Part II: The experimental seasonal prediction[J]. Advances in Atmospheric Sciences, 2006, 23(4):487-503.
19 Liang X-Z, Xu M, Yuan X, et al. Regional climate-weather research and forecasting model[J]. Bulletin of the American Meteorological Society, 2012, 93(9):1 363-1 387.
20 Liang X Z, Sun C, Zheng X, et al. CWRF performance at downscaling China climate characteristics[J]. Climate Dynamics, 2018,52(3): 2 159-2 184.
21 Liang X Z, Choi H I, Kunkel K E, et al. Surface boundary conditions for mesoscale regional climate models[J]. Earth Interactions, 2005, 9(12): 305-319.
22 Liang X Z, Xu M, Gao W, et al. Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer(MODIS) data[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D11): 1 341-1 355.
23 Liu S, Liang X Z, Gao W. Climate-Weather Research and Forecasting model (CWRF) application in China: Domain optimization[J]. Chinese Atmospheric Science,2008,32:457-468.
24 Dee D,Uppala S M,Simmons A J,et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011,137(656) : 553-597.
25 Huang B, Banzon V F, Freeman E, et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and intercomparisons[J]. Journal of Climate, 2015, 28(3):911-930.
26 Qiao Yunting, Chen Lieting, Zhang Qingyun. The definition of East Asian Monsoon Indices and their relationship to climate in China[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(1):69-82.
乔云亭,陈烈庭,张庆云.东亚季风指数的定义及其与中国气候的关系[J].大气科学,2002,26(1):69-82.
27 Yanai M, Esbensen S, Chu J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. Journal of the Atmospheric Sciences, 1973, 30(4):611-627.
28 Jian Maoqiu, Luo Huibang. Time variation of atmospheric heat source and water vapor sink in South China [J]. Tropical Ocean, 1996,15(1): 60-67.
简茂球,罗会邦.华南大气热源和水汽汇的时间变化[J].热带海洋,1996,15(1):60-67.
29 Jiang Ningbo, Luo Huibang. The seasonal variation of atmospheric heat source and water vapor sink in Asian monsoon area Ⅱ. The seasonal variation of water vapor sink [J]. Journal of tropical Meteorology, 1994,10(1): 1-8.
江宁波,罗会邦.亚洲季风区大气热源和水汽汇的季节内变化Ⅱ.水汽汇的季节内变化[J].热带气象学报,1994,10(1):1-8.
30 Liang Zhonghui, Huang Liyuan, Huang Jing, et al. Analysis of climate change characteristics of summer wind water vapor transport in the northern South China Sea [J]. Brand Research, 2018,15(3): 212-215.
梁中惠,黄丽元,黄静,等.南海北部夏季风水汽输送的气候变化特征分析[J].品牌研究,2018,15(3):212-215.
31 Zhang Y, Sperber K R, Boyle J S. Climatology and interannual variation of the east asian winter monsoon: Results from the 1979-95 NCEP/NCAR Reanalysis [J]. Monthly Weather Review,1997,125(10):2 605-2 619.
32 Li Qiaoping, Ding Yihui. Simulation of annual mean characteristics of East Asian Winter Monsoon by regional climate model [J]. Journal of Applied Meteorology, 2005,(Suppl.1): 30-40.
李巧萍,丁一汇.区域气候模式对东亚冬季风多年平均特征的模拟[J].应用气象学报,2005,(增刊1):30-40.
33 Zhao Xuan, Xu Haiming, Xu Mimi, et al. The influence of the abnormal atmospheric heat source in the Kuroshio area of the East China Sea in spring on the precipitation in the East China Sea [J]. Journal of Meteorology, 2015,73(2): 263-275.
赵煊,徐海明,徐蜜蜜,等.春季中国东海黑潮区大气热源异常对中国东部降水的影响[J].气象学报,2015,73(2):263-275.
34 Gong Yuanfa. Study on Low Frequency Oscillation of Atmospheric Heat Sources over the Tibetan Plateau and East Asia and Drought and Flood in Eastern China [D]. Nanjing: Nanjing University of Information Science & Technology, 2008.
巩远发.青藏高原及东亚大气热源低频振荡与我国东部旱涝的研究[D].南京:南京信息工程大学,2008.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[6] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[7] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[8] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[14] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[15] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
阅读次数
全文


摘要