地球科学进展 ›› 2013, Vol. 28 ›› Issue (8): 913 -922. doi: 10.11867/j.issn.1001-8166.2013.08.0913

研究论文 上一篇    下一篇

评估两类模式对陆面状态的模拟和估算
刘彦华,张述文 *,毛璐,薛宏宇   
  1. 兰州大学大气科学学院,甘肃省干旱气候变化与减灾重点实验室,甘肃 兰州 730000
  • 收稿日期:2013-03-29 修回日期:2013-06-23 出版日期:2013-08-10
  • 通讯作者: 张述文(1966-),男,河南固始人,教授,主要从事陆面过程、数据同化算法研究.E-mail:zhangsw@lzu.edu.cn E-mail:zhangsw@lzu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“突发性强对流天气演变机理和监测预报技术研究”(编号:2013CB430102);国家自然科学基金项目“有预报误差的土壤湿度估算研究”(编号:41075074)资助.

An Evaluation of Simulated and Estimated Land Surface States with Two Different Models

Liu Yanhua, Zhang Shuwen, Mao Lu, Xue Hongyu   

  1. Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2013-03-29 Revised:2013-06-23 Online:2013-08-10 Published:2013-08-10

针对夏季土壤变干过程,利用观测系统模拟试验,比较离线的陆面模式(LSM)和耦合大气边界层的陆面模式(SCM)对土壤温度、湿度和地表热通量等陆面状态的模拟,然后借助数据同化方法,评估2类模式对陆面状态的估算能力。结果显示:2类模式除对地表长波辐射和感热通量的模拟差别较大外,对其余量则较小;只同化表层土壤湿度观测时,LSM对土壤湿度和感热通量的估算好于SCM,对土壤温度的估算则相反,而对潜热通量估算的差距很小;同时同化表层土壤温度、湿度观测会使地表热通量的估算差距增大;最后对2类模式不同表现的可能原因进行分析讨论。上述数值模拟和同化结果:当用某一类模式的模拟结果或同化产品为另一类不同模式提供初边界条件时必须注意它们之间的差异,避免出现输入量引起的模式状态量间的动力不协调现象。

By using an observation system simulation experiment, the simulated soil moisture, soil temperature and surface heat fluxes are firstly compared for a period of soil drying process, respectively, from an offline Land Surface Model (LSM) and a Single Column Model (SCM) with coupled atmospheric boundary layer and LSM, and secondly, the ability of estimated land surface states are evaluated from the two models with the  aid of data assimilation technique. The results show the differences of all the simulated variables are small except long-wave radiation and sensible heat fluxes being relatively large. For only the near-surface soil moisture observation assimilation, the estimated soil moisture and surface sensible heat flux with LSM are generally better than those with SCM, on the contrary, the estimated soil temperature with SCM is better, and the difference of estimated latent heat fluxes is small. However, the assimilation of both near-surface soil temperature and soil moisture observations at the same time will make the difference of heat flux estimates become large from the two models by the end of data assimilation cycle. Finally, the possible reasons for the different performances of the two models are investigated and analyzed by using the sensitivity tests. The above results imply that it should be careful when we use one-model output as another-model input, and avoid the dynamic inconsistency between the two-model states.

中图分类号: 

[1]Sun Shufen. Physical, Biochemical Mechanism and Parameters of the Land Surface Process Model[M]. Beijing: Meteorological Press, 2005.[孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京: 气象出版社, 2005.]

[2]Seuffert G, Gross P, Simmer C, et al. The influence of hydrologic modeling on the predicted local weather: Two way coupling of a mesoscale weather prediction model and a land surface hydrologic model[J]. Journal of Hydrometeorology,2002, 3(5): 505-523.

[3]Tian Xiangjun, Xie Zhenghui. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J]. Science in China(Series D), 2008, 38(6): 741-749.[田向军,谢正辉.考虑次网格变异和土壤冻融过程的土壤湿度同化方案[J].中国科学:D辑,2008,38(6):741-749.]

[4]Walker J P, Willgoose G R, Kalma J D. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms[J]. Advances in Water Resources, 2001, 24(6): 631-650.

[5]Gou Haofeng, Liu Yanhua, Zhang Shuwen, et al. Assessing the performance of the ensemble Kalman filter for soil moisture profile retrieval[J]. Advances in Earth Science, 2010, 25(4): 400-407.[苟浩锋,刘彦华,张述文,等.评估集合卡曼滤波反演土壤湿度廓线的性能[J]. 地球科学进展,2010, 25(4): 400-407.]

[6]Han Xujun, Li Xin. Review of the nonlinear filters in the land data assimilation[J]. Advances in Earth Science, 2008, 23 (8) :813-820.[韩旭军, 李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.]

[7]Yang Z L, Niu G Y, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins[J]. Journal of Geophysical Research, 2011, 116(D12): 110, doi:10.1029/2010JD015140.

[8]Zhang Shuwen, Li Deqin, Qiu Chongjian. A multimodel ensemble-based Kalman filter for the retrieval of soil moisture profiles[J]. Advances in Atmospheric Sciences, 2011, 28(1): 195-206.

[9]Hacker J P, Snyder C. Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL[J]. Monthly Weather Review, 2005, 133(11): 3 260-3 275.

[10]Margulis S A, Entekhabi D. Variational assimilation of radiometric surface temperature and reference-level micrometeorology into a model of the atmospheric boundary layer and land surface[J]. Monthly Weather Review, 2003, 131(7): 1 272-1 288.

[11]Seuffert G H, Wilker J P, Viterbo J F, et al. Soil moisture analysis combining screen-level parameters and microwave brightness temperature: A test with field data[J]. Geophysical Research Letters, 2003, 30(10): 1 498-1 502. 

[12]Seuffert G H, Wilker J P, Viterbo J F, et al. The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis[J]. Journal of Hydrometeorology, 2004, 5(3): 516-531. 

[13]Mahrt L, Pan H A. A two-layer model of soil hydrology[J]. Bound-Lay Meteorology, 1984, 29(1): 1-20.

[14]Ek M, Mitchell K, Yin L, et al. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22): 8 851, doi:10.1029/2002JD003296.

[15]Pagowski M J, Hacker J P, Bao J W. Behavior of WRF PBL Schemes and Land-surface Models in 1D Simulations during BAMEX[C].Joint WRF/MM5 Users’ Workshop. Boulder CO, 2005:27-30.

[16]Hacker J P, Rostkier-Edelstein D. PBL state estimation with surface observations, a column model, and an ensemble filter[J].Monthly Weather Review, 2007, 135(8): 2 958-2 972.

[17]Evensen G. Sequential data assimilation with a nonlinear QG model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10 143-10 162.

[18]Burgers G, van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6): 1 719-1 724.

[19]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.

[20]Bishop C H, Etherton B, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.

[21]Anderson J L. An ensemble adjustment filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2 884-2 903.

[1] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[2] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[7] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[8] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[9] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[10] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[11] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[12] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[13] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[14] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[15] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
阅读次数
全文


摘要