Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (8): 913-922    DOI: 10.11867/j.issn.1001-8166.2013.08.0913
研究论文     
评估两类模式对陆面状态的模拟和估算
刘彦华,张述文*,毛璐,薛宏宇
兰州大学大气科学学院,甘肃省干旱气候变化与减灾重点实验室,甘肃 兰州 730000
An Evaluation of Simulated and Estimated Land Surface States with Two Different Models
Liu Yanhua, Zhang Shuwen, Mao Lu, Xue Hongyu
Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
 全文: PDF(3983 KB)  
摘要:

针对夏季土壤变干过程,利用观测系统模拟试验,比较离线的陆面模式(LSM)和耦合大气边界层的陆面模式(SCM)对土壤温度、湿度和地表热通量等陆面状态的模拟,然后借助数据同化方法,评估2类模式对陆面状态的估算能力。结果显示:2类模式除对地表长波辐射和感热通量的模拟差别较大外,对其余量则较小;只同化表层土壤湿度观测时,LSM对土壤湿度和感热通量的估算好于SCM,对土壤温度的估算则相反,而对潜热通量估算的差距很小;同时同化表层土壤温度、湿度观测会使地表热通量的估算差距增大;最后对2类模式不同表现的可能原因进行分析讨论。上述数值模拟和同化结果:当用某一类模式的模拟结果或同化产品为另一类不同模式提供初边界条件时必须注意它们之间的差异,避免出现输入量引起的模式状态量间的动力不协调现象。

关键词: 陆面模式柱状模式大气边界层数值模拟数据同化    
Abstract:

By using an observation system simulation experiment, the simulated soil moisture, soil temperature and surface heat fluxes are firstly compared for a period of soil drying process, respectively, from an offline Land Surface Model (LSM) and a Single Column Model (SCM) with coupled atmospheric boundary layer and LSM, and secondly, the ability of estimated land surface states are evaluated from the two models with the  aid of data assimilation technique. The results show the differences of all the simulated variables are small except long-wave radiation and sensible heat fluxes being relatively large. For only the near-surface soil moisture observation assimilation, the estimated soil moisture and surface sensible heat flux with LSM are generally better than those with SCM, on the contrary, the estimated soil temperature with SCM is better, and the difference of estimated latent heat fluxes is small. However, the assimilation of both near-surface soil temperature and soil moisture observations at the same time will make the difference of heat flux estimates become large from the two models by the end of data assimilation cycle. Finally, the possible reasons for the different performances of the two models are investigated and analyzed by using the sensitivity tests. The above results imply that it should be careful when we use one-model output as another-model input, and avoid the dynamic inconsistency between the two-model states.

Key words: Land surface model    Column model    Atmospheric boundary layer    Numerical simulation    Data assimilation
收稿日期: 2013-03-29 出版日期: 2013-08-10
:  P461.4  
基金资助:

国家重点基础研究发展计划项目“突发性强对流天气演变机理和监测预报技术研究”(编号:2013CB430102);国家自然科学基金项目“有预报误差的土壤湿度估算研究”(编号:41075074)资助.

通讯作者: 张述文(1966-),男,河南固始人,教授,主要从事陆面过程、数据同化算法研究.E-mail:zhangsw@lzu.edu.cn     E-mail: zhangsw@lzu.edu.cn
作者简介: 刘彦华(1982-),男,河北承德人,博士研究生,主要从事陆气相互作用及同化研究.E-mail:liuyanh07@lzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘彦华
张述文
毛璐
薛宏宇

引用本文:

刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.

Liu Yanhua, Zhang Shuwen, Mao Lu, Xue Hongyu. An Evaluation of Simulated and Estimated Land Surface States with Two Different Models. Advances in Earth Science, 2013, 28(8): 913-922.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.08.0913        http://www.adearth.ac.cn/CN/Y2013/V28/I8/913

[1]Sun Shufen. Physical, Biochemical Mechanism and Parameters of the Land Surface Process Model[M]. Beijing: Meteorological Press, 2005.[孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京: 气象出版社, 2005.]

[2]Seuffert G, Gross P, Simmer C, et al. The influence of hydrologic modeling on the predicted local weather: Two way coupling of a mesoscale weather prediction model and a land surface hydrologic model[J]. Journal of Hydrometeorology,2002, 3(5): 505-523.

[3]Tian Xiangjun, Xie Zhenghui. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J]. Science in China(Series D), 2008, 38(6): 741-749.[田向军,谢正辉.考虑次网格变异和土壤冻融过程的土壤湿度同化方案[J].中国科学:D辑,2008,38(6):741-749.]

[4]Walker J P, Willgoose G R, Kalma J D. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms[J]. Advances in Water Resources, 2001, 24(6): 631-650.

[5]Gou Haofeng, Liu Yanhua, Zhang Shuwen, et al. Assessing the performance of the ensemble Kalman filter for soil moisture profile retrieval[J]. Advances in Earth Science, 2010, 25(4): 400-407.[苟浩锋,刘彦华,张述文,等.评估集合卡曼滤波反演土壤湿度廓线的性能[J]. 地球科学进展,2010, 25(4): 400-407.]

[6]Han Xujun, Li Xin. Review of the nonlinear filters in the land data assimilation[J]. Advances in Earth Science, 2008, 23 (8) :813-820.[韩旭军, 李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.]

[7]Yang Z L, Niu G Y, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins[J]. Journal of Geophysical Research, 2011, 116(D12): 110, doi:10.1029/2010JD015140.

[8]Zhang Shuwen, Li Deqin, Qiu Chongjian. A multimodel ensemble-based Kalman filter for the retrieval of soil moisture profiles[J]. Advances in Atmospheric Sciences, 2011, 28(1): 195-206.

[9]Hacker J P, Snyder C. Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL[J]. Monthly Weather Review, 2005, 133(11): 3 260-3 275.

[10]Margulis S A, Entekhabi D. Variational assimilation of radiometric surface temperature and reference-level micrometeorology into a model of the atmospheric boundary layer and land surface[J]. Monthly Weather Review, 2003, 131(7): 1 272-1 288.

[11]Seuffert G H, Wilker J P, Viterbo J F, et al. Soil moisture analysis combining screen-level parameters and microwave brightness temperature: A test with field data[J]. Geophysical Research Letters, 2003, 30(10): 1 498-1 502. 

[12]Seuffert G H, Wilker J P, Viterbo J F, et al. The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis[J]. Journal of Hydrometeorology, 2004, 5(3): 516-531. 

[13]Mahrt L, Pan H A. A two-layer model of soil hydrology[J]. Bound-Lay Meteorology, 1984, 29(1): 1-20.

[14]Ek M, Mitchell K, Yin L, et al. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22): 8 851, doi:10.1029/2002JD003296.

[15]Pagowski M J, Hacker J P, Bao J W. Behavior of WRF PBL Schemes and Land-surface Models in 1D Simulations during BAMEX[C].Joint WRF/MM5 Users’ Workshop. Boulder CO, 2005:27-30.

[16]Hacker J P, Rostkier-Edelstein D. PBL state estimation with surface observations, a column model, and an ensemble filter[J].Monthly Weather Review, 2007, 135(8): 2 958-2 972.

[17]Evensen G. Sequential data assimilation with a nonlinear QG model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10 143-10 162.

[18]Burgers G, van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6): 1 719-1 724.

[19]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.

[20]Bishop C H, Etherton B, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.

[21]Anderson J L. An ensemble adjustment filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2 884-2 903.

[1] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[2] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[3] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[4] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[5] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[6] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[7] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[8] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展*[J]. 地球科学进展, 2015, 30(5): 539-551.
[9] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[10] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[11] 孟春雷. 城市地表特征数值模拟研究进展[J]. 地球科学进展, 2014, 29(4): 464-474.
[12] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[13] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[14] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[15] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.