地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 717 -730. doi: 10.11867/j.issn.1001-8166.2019.07.0717

研究论文 上一篇    下一篇

太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究
王坚红 1, 4( ),张萌 1, 2,任淑媛 5,王兴 3, 6,苗春生 3, 6   
  1. 1. 气象灾害预报预警与评估协同创新中心,南京信息工程大学, 江苏 南京 210044
    2. 吉林省气象服务 中心,吉林 长春 130062
    3. 南京信息工程大学大气科学学院, 江苏 南京 210044
    4. 南京信息工程 大学海洋科学学院, 江苏 南京 210044
    5. 兰州市气象台,甘肃 兰州 730020
    6. 南京信大气象科学技术研究院, 江苏 南京 210044
  • 收稿日期:2019-01-07 修回日期:2019-05-20 出版日期:2019-07-10
  • 基金资助:
    国家自然科学基金面上项目“海洋中尺度涡旋动力结构与维持机制研究”(41276033);预报预警的方法研究”(41805033)

Simulation Study on the Impact of Taihang Mountain Slopes on Downhill Front Cyclone Rainstorm

Jianhong Wang 1, 4( ),Meng Zhang 1, 2,Shuyuan Ren 5,Xing Wang 3, 6,Chunsheng Miao 3, 6   

  1. 1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology,Nanjing 210044,China
    2. Jilin Meteorological Service Center,Changchun 130062,China
    3. College of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing 210044,China
    4. School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044,China
    5. Lanzhou Meteorological Observatory, Lanzhou 730020, China
    6. Nanjing Xinda Institute of Meteorological Science & Technology, Nanjing 210044, China
  • Received:2019-01-07 Revised:2019-05-20 Online:2019-07-10 Published:2019-07-29
  • About author:Wang Jianhong (1956-), female, Shanghai City, Professor. Research areas include atmospheric and oceanic dynamics.E-mail: 1597706505@qq.com
  • Supported by:
    ect supported by the National Natural Science Foundation “The dynamic structures and maintaining mechanism of oceanic meso-scale eddies”(41276033);forecast and early-warning of downburst”(41805033)

近6年河北夏季降水统计与诊断分析显示,太行山东侧的华北平原中南部是夏季暴雨灾害频发地区,雨带多沿太行山脉经向分布, 过程雨量往往达到700 mm以上。重点研究夏季下山锋面黄河气旋和暴雨,该类系统占统计样本73次暴雨日数的20%。对2016年典型锋面黄河气旋大暴雨的分析显示,太行山脉的经向分布与气旋北部的向山气流和气旋西部的南下气流配合,引导形成沿山脉走向的深厚狭长冷温度槽,增强锋面气旋中的温度梯度,加强气旋斜压性和旋转风强度,导致气旋加强,东移速度减慢。通过气旋急流的卷夹与山脉阻挡的配合造成深厚的充沛水汽环境,阻碍水汽通量和低层水汽主体西进;在山脉东侧形成高能舌对流不稳定;触发含充沛水汽团的强烈抬升,形成3处垂直运动关键区,制约暴雨落区。太行山脉坡度对暴雨影响机制的数值试验显示:坡下暴雨区与山脉平行,且经向山脉走向可造成更大范围强降水,并易造成局地经历气旋暖锋与冷锋二次锋面降水,致使暴雨持续时间拉长。山脉坡度与山脉阻挡抬升强度成正比,并形成下干上湿对流不稳定与锋面上暖下冷热力不稳定叠加,不稳定性更强。山脉坡度与气旋下山减压增强及维持时间成正比,与向华北平原下滑远近成反比,即影响气旋东移路径与速度。

The statistical and diagnostic analysis of precipitation in Hebei Province in the past six years shows that the mid-south of the North China Plain on the east side of the Taihang Mountains is an area of frequent rainstorm disasters in summer. The rain belt is mostly distributed along the Taihang Mountains, and the rainfall is often over 700mm. Focus was on the summer downhill frontal Yellow River cyclone, which accounted for 20% of the 73 storm days in the statistical samples. The analysis of the typical frontal cyclone heavy rain in 2016 shows that the meridional distribution of the Taihang Mountains cooperates with the climbing mountain jet in the north of the cyclone and the southward flow in the west of the cyclone, leading to the formation of a deep narrow cold temperature trough along the mountain orientation. It enhances the temperature gradient in the frontal cyclone, enhances the baroclinicity of the cyclone and the intensity of the rotating wind, resulting in augmentation of the cyclone and slowing of the eastward movement. Through the cooperation of the entanglement of the cyclone jet and the mountain block, a deep and abundant water vapor environment is formed, and the moving westward of water vapor flux and the low-level water vapor main body are hindered; The high-energy tongue convection instability on the eastern side of the mountain range is formed, a strong uplift with abundant water vapor masses is triggered, and three critical areas of vertical motion occurred, which restricts the rainstorm locations. Numerical experiments on the mechanism of the influence of the slope of the Taihang Mountains on heavy rain show that the downhill rainstorm area is parallel to the mountain range, and the meridional mountain range can cause a greater range of heavy precipitation. It is also easy to cause double frontal precipitation locally by a same cyclonic warm front and cold front, resulting in a long duration of heavy rain. The slope of the mountain is proportional to the intensity of the mountain block and forms the wet convection instability with the dry at lower and wet at upper overlapping on a thermal instability of the front zone with cold at lower and warm at upper, such as the total instability is stronger. The slope of the mountain is proportional to the increase and maintenance time of the cyclone decompression during downhill. It is inversely proportional to the decline to the North China Plain, which affects the path and speed of the cyclone eastward movement.

中图分类号: 

表1 20122017年夏季河北太行山东侧大暴雨日出现频次及暴雨西风带气旋 括号中数字)统计
Table 1 Summer rainstorm frequency at east side of Mountain Taihangshan during 2012-2017 and cyclones
图1 2016年“7·19”河北大暴雨测站降水量过程演变与雨带空间分布
Fig.1 "7·19" rainfall at observatory stations during heavy rainstorm in Heibei in 2016 and precipitation distribution of the rainstorm
图2 暴雨高空环流场及华北地形概况
Fig.2 High level circulations of rainstorm and the general situation of North China terrain.
图3 暴雨过程1 000 hPa环流场及温度场
Fig.3 The circulation and temperature fields of rainstorm process at 1 000 hPa
图4 201671918:00 850 hPa水汽通道追踪及气旋风场最大轴线
Fig.4 Vapor flux tracking and cyclonic wind maximum axis at 18:00 on July 19 2016
图5 201671908:00 850 hPa假相当位温水平分布
Fig.5 The pseudoequivalent potential temperature distribution at 850 hPa at 08:00 on July 19, 2016
图6 201671912:00 850 hPa气旋风场与地形配合图
Fig.6 The cyclonic wind field at 850 hPa and Taihang Mountain topography at 12:00 on July 19,2016
图7 201671912:00 暴雨中心(石家庄)垂直速度114.3°E经向剖面图
Fig.7 Vertical velocity of rainstorm center Shijiazhuang City along 114.3°E longitude-vertical cross section at 12:00 on July 192016
图8 20167191200 700 hPa模拟流场验证
Fig.8 Validation of wind fields at 700 hPa at 12:00 on July 192016
图9 20167191500降水分布模拟验证图
Fig.9 Validation of rainfall distribution at 15:00 on July 192016
图10 山脉坡度敏感性试验区域以及坡度设计示意图
Fig. 10 Area and slops of mountain slop experimental design
图 11 20167191200200600(每隔6小时)的气旋中心移动路径图
Fig.11 The trajectorys of cyclone center positions from 12:00 on July 19 to 06:00 on July 20 2016 (per 6 hours)
表2 20167191200200600 6小时气旋中心气压值(单位: hPa
Table 2 The intensity of cyclone center per 6 hours during 1200 on July 19 and 0600 on July 20, 2016unithPa
图12 201671912:00-18:00 6 h累积降水分布及地面风场对比图
Fig.12 The accumulated rainfall distribution for 6 hours and surface wind field at 12:00-18:00 on July 19 2016
1 Ma Yanzhi , Zhao Guixiang , Hao Jingyu , et al . Numerical simulation and diagnostic analysis about a heavy rainstorm process in North China based on WRF model [J]. Journal of Arid Meteorology, 2016, 34(3): 511-521.
马严枝,赵桂香,郝婧宇,等 .“8.19”华北区域暴雨的数值模拟与诊断分析[J]. 干旱气象,2016,34(3): 511-521.
2 Dong Jiangnan , Yu Lei , Ma Hongqing , et al . Analysis on a Huanghuai cyclone rainstorm process in Baoding City[J]. Shanxi Science and Technology, 2018, 33(6): 134-138.
董疆南,于雷,马鸿青,等 . 保定市一次黄淮气旋暴雨过程分析[J]. 山西科技, 2018, 33(6): 134-138.
3 Zhang Nan , He Qunying , Liu Yiwei , et al . Multi-scale comparative analysis of two torrential rain events in Tianjin on the edge of the subtropical high[J]. Torrential Rainand Disasters, 2014,33(4): 372-379.
张楠,何群英,刘一玮,等 .天津地区两次副高边缘特大暴雨过程的多尺度对比分析[J].暴雨灾害,2014,33(4): 372-379.
4 Li Guocui , Sun Yun , Li Guoping , et al . Analysis of heavy rain on August 9, 2011 in west of Shijiazhuang area[J]. Journal of Meterology and Environment, 2013,29(5):1-5.
李国翠,孙云,李国平,等 . “20110809”石家庄西部大暴雨分析[J]. 气象与环境学报, 2013,29(5):1-5.
5 Jiang Jixi , Xiang Xukang . A primary study of the extreme rainfall event in early August 1996 over Heibei Province[J]. Meteorological Monthly,1997, 23(7):19-23.
江吉喜,项续康 .“96·8”河北特大暴雨成因初探[J].气象,1997, 23(7):19-23.
6 Zhang Sumei , Liu Xiaofeng , Ma Xiaoshan , et al . Diagnostic analysis of flooding rainstorm caused by MCC in central and southern Hebei[C]// The 29th Annual Meeting of the Chinese Meteorological Society. Shenyang,2012.
张素美, 刘晓锋,马小山,等 . 河北中南部的 MCC 致洪暴雨的诊断分析[C]//第29届中国气象学会年会.沈阳,2012.
7 Gao Tao , Xie Li’an .Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014,29(5): 577-589.
高涛,谢立安 .近50年来中国极端降水趋势与物理成因研究综述[J].地球科学进展,2014,29(5): 577-589.
8 Yan Guanhua , Li Qiaoping , Li Ruiyi . Numerical simulation for terrain effects of Taihang Mountain on heavy rainfall over North China[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition),2015,7(4):351-358.
闫冠华, 李巧萍, 李瑞义 .太行山地形对华北暴雨影响的数值模拟试验[J].南京信息工程大学学报:自然科学版, 2015,7(4):351-358.
9 Gao Wanquan , Li Yu'e , Gu Liyan , et al . Analysis of the impact of topography on the ‘7·21’ extreme heavy rainstorm[J]. Chinese Agricultural Science Bulletin, 2014,30(20):188-196.
高万泉,李玉娥,顾黎燕,等 . “7·21”特大暴雨的地形影响分析[J].中国农学通报, 2014,30(20):188-196.
10 Zhu Xiangdong , Fan Gang , Ning Dezheng , et al . Influence of the angle between ridge and wind direction on wind speed distribution in the wind farm under complex topography[C]//2nd International Workshop on Materials Engineering and Computer Sciences, IWMECS, 2015.
11 Li Guoping , Li Shanshan , Huang Chuhui . Research status and prospect of the interaction between Tibetan Plateau Shear Line and Tibetan Plateau Vortex[J]. Advances in Earth Science,2017, 32(9): 919-925.
李国平, 李山山, 黄楚惠 .高原切变线与高原低涡相互作用的研究现状与展望[J].地球科学进展,2017, 32(9): 919-925.
12 Miao Chunsheng , Wu Qiong , Wang Jianhong , et al . Simulation study on effects of terrain of Dabie Mountains on rainstorm cyclone in Huaihe River Basin during Meiyu period[J]. Transaction Atmospheric Science, 2017, 40(4):485-495.
苗春生,吴琼,王坚红,等,淮河流域大别山地形对梅雨期暴雨低涡影响的模拟研究[J].大气科学学报,2017,40(4):485-495.
13 Miao Chunsheng , Liu Weixin , Wang Jianhong , et al . Comparison between two rainstorm meso-scale vortices circumambulated respectively from two sides of mountain Dabieshan during meiyu season[J]. Plateau Meteorology, 2014,33(2):394-406.
苗春生,刘维鑫,王坚红,等 .梅雨期经大别山两侧暴雨中尺度低涡对比分析[J].高原气象,2014,33(2):394-406.
14 Wang Lingzi , Miao Junfeng , Han Furong . Overview of impact of topography on precipitation in China over last 10 years[J]. Meteorological Science and Technology, 2018, 46(1):64-75.
王凌梓,苗峻峰,韩芙蓉,近10年中国地区地形对降水影响研究进展[J]. 气象科技, 2018, 46(1):64-75.
15 Wang Jianhong , Yang Yiya , Miao Chunsheng , et al . The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in South China coast [J]. Chinese Journal of Atmospheric Sciences,2017, 41(4): 784-796.
王坚红, 杨艺亚, 苗春生, 等 . 华南沿海暖区辐合线暴雨地形动力机制数值模 拟研究[J]. 大气科学,2017,41(4):784-796.
16 Tao Linke , Yang Kan , Hu Wendong , et al . The contribution of Helan Mountain to the formation of a heavy rainstorm occurred over Yinchuan Plain by numerical simulation[J]. Desert and Oasis Meteorology, 2014,8(4):32-39.
陶林科,杨侃,胡文东,等 .“7·30”大暴雨的数值模拟及贺兰山地形影响分析[J].沙漠与绿洲气象,2014,8(4):32-39.
17 Ni Yue , Liao Yizhang , Su Yuan . Numerical simulation of the influence of terrain on "2015.7.22" rainstorm disasters[C]//The 33rd Annual Meeting of the Chinese Meteorological Society. Xi'an,2016.
倪悦, 廖义樟,苏源, 地形对“ 2015.7.22”致灾大暴雨影响的数值模拟试验[C]// 第33届中国气象学会年会论文.西安,2016.
18 Wallace J M , Hobbs P V . Atmospheric Science,An Introductory Survey (Second Edition) [M]. Burlington, MA: Academic Press,2006.
19 Miao Chunsheng , Rong Chen , Wang Jianhong , et al . Research on role of cyclone jet in cyclone development in the eastern sea area of China in spring[J]. Transaction Atmospheric Science, 2018, 41(1):55-66.
苗春生,戎辰,王坚红,等 .春季中国东部海域气旋急流在气旋发展中的作用研究[J].大气科学学报, 2018, 41(1):55-66.
20 Ma Leiming , Bao Xuwei . Research progress on physical parameterization schemes in numerical weather prediction models[J].Advances in Earth Science, 2017,32(7):679-687.
马雷鸣,鲍旭炜 . 数值天气预报模式物理过程参数化方案的研究进展[J].地球科学进展,2017, 32(7):679-687.
No related articles found!
阅读次数
全文


摘要