地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 706 -716. doi: 10.11867/j.issn.1001-8166.2019.07.0706

所属专题: 极端天气

综述与评述 上一篇    下一篇

极端天气的数值模式集合预报研究进展
高丽 1( ),陈静 1,郑嘉雯 1, 2,陈权亮 2   
  1. 1. 国家气象中心,中国气象局数值预报中心,北京 100081
    2. 成都信息工程大学,大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
  • 收稿日期:2019-02-12 修回日期:2019-05-25 出版日期:2019-07-10
  • 基金资助:
    国家科技支撑计划项目“基于集合预报的中期概率预报技术研发”(2015BAC03B01);集合概率预报方法研究”(41875138)

Progress in Researches on Ensemble Forecasting of Extreme Weather Based on Numerical Models

Li Gao 1( ),Jing Chen 1,Jiawen Zheng 1, 2,Quanliang Chen 2   

  1. 1. CMA Numerical Prediction Center,National Meteorological Center,Beijing 100081, China
    2. College of Atmospheric Science/Plateau Atmosphere and Environment Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225, China
  • Received:2019-02-12 Revised:2019-05-25 Online:2019-07-10 Published:2019-07-29
  • About author:Gao Li (1978-), female, Alashan Zuoqi, Inner Mongolia Autonomous Region, Senior engineer. Research areas include weather dynamics and ensemble forecasting. E-mail: gaol@cma.gov.cn
  • Supported by:
    ect supported by the National Science and Technology Supporting Program “Research and development of medium-range probabilistic forecast techniques”(2015BAC03B01);The National Natural Science Foundation of China “Medium-range weather predictability and ensemble-based probabilistic forecasting method of extreme temperature event in China”(41875138)

在气候变化背景下,极端天气事件(暴雨、高温热浪和低温冷害等)发生频次有不同程度增加的趋势,由极端事件造成的气象灾害也呈现增多趋势,因此开展极端天气的预报研究尤为重要。系统性回顾了极端天气预报的主要方法、数值模式集合天气预报发展现状及其在极端天气预报中的应用情况以及集合概率预报的订正方法研究进展。目前,极端天气的预报以动力数值模式方法为主导,即以集合概率预报信息为主要依据的动力预报方法成为当前国际上极端天气业务预报的主流方法。基于数值模式集合预报的极端天气预报应用和依靠概率预报偏差订正来改进极端预报,是当前该领域研究的重要发展方向。在全面回顾的基础上,围绕如何发展有效方法提升极端事件识别和预报水平,进一步提出未来极端天气集合预报发展的几点建议。

Under the background of climate change, extreme weather events (e.g., heavy rainfall, heat wave, and cold damage) in China have been occurring more frequently with an increasing trend of induced meteorological disasters. Therefore, it is of great importance to carry out research on forecasting of extreme weather. This paper systematically reviewed the primary methodology of extreme weather forecast, current status in development of ensemble weather forecasting based on numerical models and their applications to forecast of extreme weather, as well as progress in approaches for correcting ensemble probabilistic forecast. Nowadays, the forecasting of extreme weather has been generally dominated by methodology using dynamical models. That is to say, the dynamical forecasting methods based on ensemble probabilistic forecast information have become prevailing in current operational extreme weather forecast worldwide. It can be clearly found that the current major directions of research and development in this field are the application of ensemble forecasts based on numerical models to forecasting of extreme weather, and its improvement through bias correction of ensemble probabilistic forecast. Based on a relatively comprehensive review in this paper, some suggestions with respect to development of extreme weather forecast in future were further given in terms of the issues of how to propose effective approaches on improving level of identification and forecasting of extreme events.

中图分类号: 

1 ZhaiPanmao, LiuJing. Extreme weather/climate events and disaster prevention and mitigation under global warming background[J]. Engineering Sciences, 2012, 14(9): 55-63.
2 PalmerT N, BrankovicC, RichardsonD S. A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126:2 013-2 034.
3 RichardsonD S. Skill and relative economic value of the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126:649-668.
4 DuJun. Present situation and prospects of ensemble numerical prediction[J]. Quarterly Journal of Applied Meteorlolgy, 2002, 13(1): 16-28.
杜钧. 集合预报的现状和前景[J]. 应用气象学报, 2002, 13(1): 16-28.
5 HuangfuXueguan. The verification for ensemble prediction system of national meteorlogical center[J]. Quarterly Journal of Applied Meteorlolgy, 2002,13(1): 29-36.
皇甫雪官. 国家气象中心集合数值预报检验评价[J]. 应用气象学报, 2002, 13(1): 29-36.
6 PengYong, WangPing, XuWei, et al. Review of weather ensemble prediction[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(4): 90-97.
彭勇, 王萍, 徐炜, 等. 气象集合预报的研究进展[J]. 南水北调与水利科技, 2012,10 (4) : 90-97.
7 Van den DoolH M, TothZ. Why do forecasts for "near normal" often fail?[J]. Weather and Forecasting, 1991, 6:76-85.
8 EasterlingD R, MeehlG A, ParmesanC, et al. Climate extremes: Observations, modeling and impacts[J]. Science, 2000, 289(5 487): 2 068-2 074.
9 RenFumin, GaoHui, LiuLüliu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40(7): 860-874.
任福民,高辉,刘绿柳,等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象,2014, 40(7):860-874.
10 GaoLi, RenHongli, ZhengJiawen, et al. Diagnosis features of extreme temperature variations in China based on the NCEP-GEFS reforecasts[J]. Transactions of Atmospheric Sciences, 2019, 42(1):58-67.
高丽,任宏利,郑嘉雯,等. 基于NCEP-GEFS回算资料的我国极端温度变化特征研究[J]. 大气科学学报,2019,42(1):58-67.
11 YangQiuming. A study of the extended-range forecast for the low frequency temperature and high temperature weather over the lower reaches of Yangtze River Valley in summer[J]. Advances in Earth Science,2018,33(4): 385-395.
杨秋明.长江下游夏季低频温度和高温天气的延伸期预报研究[J].地球科学进展,2018,33(4): 385-395.
12 DongHuiqing, XuFangxu, LiXiong. The climatic features and short-term forecast of megatherm weather in Guangxi[J]. Journal of Guangxi Meteorology, 2000, 21(Suppl.):50-54.
董慧青, 徐方旭, 李雄. 广西高温天气的气候特征及短期气候预测[J]. 广西气象, 2000, 21(增刊): 50-54.
13 ZhangShangyin, WangShourong, ZhangYongshan, et al. The climatic character of high temperature and the prediction in the large cities of east of China[J]. Journal of Tropical Meteorology , 2004, 24(6): 750-760.
张尚印, 王守荣, 张永山, 等. 我国东部主要城市夏季高温气候特征及预测[J]. 热带气象学报, 2004, 24(6): 750-760.
14 ZhangShangyin, ZhangDekuan, XuXiangde, et al. Study on the mechanism and forecasting method of high temperature disaster in summer in the large cities of the Yangtze River Basin[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(6): 840-846.
张尚印, 张德宽, 徐祥德, 等. 长江中下游夏季高温灾害机理及预测[J]. 南京气象学报, 2005, 28(6): 840-846.
15 ZhouHoufu, WangXingrong, ZhaiWuquan, et al. Test prediction for multi-regression model on high temperature days[J]. Scientia Meteorologica Sinica, 2005,25(5): 505-512.
周后福, 王兴荣, 翟武全, 等. 基于混合回归模型的夏季高温日数预测[J]. 气象科学, 2005, 25(5):505-512.
16 LiuLüliu, SunLinhai, LiaoYaoming, et al. Development and application of national prediction system for extreme high temperature[J]. Meteorological Monthly, 2008, 4(10): 102-107.
刘绿柳, 孙林海, 廖要明, 等. 国家级极端高温短期气候预测系统的研制及应用[J]. 气象, 2008, 4(10): 102-107.
17 WhelerM,HendonH H. An al-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J]. Monthly Weather Review, 2004,132:1 917-1 932.
18 WuJiankun, GaoLi, QiaoLin, et al. Research on Chinese extreme temperature forecasting method based on T213 ensemble forecast[J]. Journal of Meteorological Sciences, 2015, 35(4): 438-444.
吴剑坤, 高丽, 乔林, 等. 基于T213集合预报的中国极端温度预报方法研究[J]. 气象科学, 2015, 35(4): 438-444.
19 ZhangJiawen, GaoLi, RenHongli, et al. Verification of China extreme temperature forecasts in 2016 based on T639 Ensemble forecast[J]. Meteorological Monthly, 2019, 45(4): 469-482.
郑嘉雯,高丽,任宏利,等.基于T639集合预报的我国2016年极端温度预报检验[J].气象,2019, 45(4):469-482.
20 HamillT M, WhitakerJ S. Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application Mon[J]. Monthly Weather Review, 2006, 134: 3 209-3 229.
21 EpsteinE S. Stochastic dynamic prediction[J]. Tellus, 1969, 21: 739-759.
22 LeithC E. Theoretical skill of Monte Carlo forecasts[J]. Monthly Weather Review, 1974, 102:409-418.
23 KrishnamurtiT, KrishtawalN C M, ZhangZ, et al. Multimodel ensemble forecasts for weather and seasonal climate[J]. Journal of Climate, 2000, 13(23): 4 196-4 216.
24 VrugtJ A, ClarkM P, DiksC G H, et al. Robinson, multi-objective calibration of forecast ensembles using Bayesian model averaging[J]. Geophysical Research Letters, 2006, 33(19): L19817.
25 YuanHuiling, GaoX G, MullenS L, et al. Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network[J]. Weather and Forecasting, 2007, 22: 1 287-1 303.
26 HamillT M, HagedornR, WhitakerJ S. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation[J]. Monthly Weather Review, 2008, 136: 2 620-2 632.
27 BohnT J, SonessaM Y, LettenmaierD P. Seasonal hydrologic forecasting: Do multimodel ensemble averages always yield improvements in forecast skill?[J]. Journal of Hydrometeorology, 2010, 11(6):1 358-1 372.
28 NajafiM R, MoradkhaniH. Ensemble combination of seasonal streamflow forecasts[J]. Journal of Hydrologic Engineering, 2016, 21(1): 04015043.
29 AbramowitzG, GuptaH. Towards a model space and independence metric[J]. Geophysical Research Letters, 2008, 35(5): L05705.
30 PalmerT N, R?is?nenJ. Quantifying the risk of extreme seasonal precipitation in a changing climate[J]. Nature, 2002, 415(6 871):512-514.
31 PennellC, ReichlerT. On the effective number of climate models[J]. Journal of Climate, 2011, 24(9): 2 358-2 367.
32 HoffmanR N, KalnayE. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus, 1983, 35A(2): 100-118.
33 MureauR, MolteniF, PalmerT N. Ensemble prediction using dynamically conditioned perturbations[J]. Quarterly Houranl of the Royal Mateorological Society, 1993, 119(510): 229-323.
34 KalnayE, TothZ. Efficient selection of Monte Carlo forecast ensemble members[M]// Research Highlights of the NMC Development Division: 1990-1991. Washington DC:NMC,1991:157-159.
35 TothZ, KalnayE. Ensemble forecasting at NMC: The generation of perturbations[J]. Bulletin of the American Meteorological Society, 1993, 74:2 317-2 330.
36 TothZ, KalnayE. Ensemble forecasting at NCEP and the Breeding Method[J]. Monthly Weather Review,1997, 125(12):3 297-3 319.
37 GuanJiping, ZhangLifeng, ZhangMing. Review of the ensemble forecast[J]. Scientia Meteorologica Sinica, 2006, 26(2): 228-235.
关吉平, 张立凤, 张铭. 集合预报研究现状与展望[J]. 气象科学, 2006, 26(2): 228-235.
38 EvensenG. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10 143-10 162.
39 BishopC H, TothZ. Ensemble transform and adaptive observations[J]. Journal of the Atmospheric Sciences,1999, 56(11): 1 748-1 765.
40 BishopC H, EthertonB J, MajumdarS J. Adaptive sampling with the ensemble transform Kalman filter. Part Ι: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
41 ChangMingheng,BaiYulong,MaXiaoyan,et al. Localization analysis of data assimilation methods coupled with fuzzy control algo- rithms[J]. Advances in Earth Science,2018,33(8): 874-883.
常明恒,摆玉龙,马小艳,等.一种新的耦合模糊控制局地化的同化方法[J].地球科学进展,2018,33(8): 874-883.
42 WangX G, BishopC H. A comparison between KTKF and breeding ensemble forecast schemes[J]. Journal of the Atmospheric Sciences,2003, 60(9): 1 140-1 158.
43 LongKeji,ChenJing,MaXulin, et al. The Preliminary study on ensemble prediction of GRAPES-meso based on ETKF[J]. Journal of Chengdu University of Information Technology, 2011, 26(1): 37-46.
龙柯吉,陈静,马旭林, 等. 基于集合卡尔曼变换的区域集合预报初步研究[J]. 成都信息工程学院学报,2011,26(1): 37-46.
44 MaXulin, YuYueming, JiangSheng, et al. Optimization and influence experiment to identify sensitive areas for target observations on ETKF method[J]. Transactions of Atmospheric Sciences, 2014,37(6): 749-757.
马旭林,于月明,姜胜,等. 基于集合卡尔曼变换的目标观测敏感区识别系统优化及影响试验[J]. 大气科学学报,2014,37(6): 749-757.
45 ZhiXiefei, SunJing, ZhouWenyou. Ensemble and multimodel ensemble forecasts of western Pacific typhoons during summer 2009[J]. Transactions of Atmospheric Sciences, 2015, 38(5): 633-640.
智协飞,孙晶,周文友. 2009年夏季西太平洋台风的集合预报和多模式集成预报试验[J]. 大气科学学报,2015,38(5): 633-640.
46 MuMu, JiangZhina. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation[J]. Chinese Science Bulletin, 2008,53(13): 2 062-2 068.
doi: 10.1360/csb2007-52-12-1457    
穆穆, 姜智娜. 集合预报初始扰动产生的一个新方法: 条件非线性最优扰动[J]. 科学通报,2007, 52(12): 1 457-1 465. DOI:10.1360/csb2007-52-12-1457.
doi: 10.1360/csb2007-52-12-1457    
47 HouZhaolu, LiJianping, DingRuiqiang, et al. The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction [J]. Climate Dynamics, 2018, 51(1/2): 283-304.
48 LiS, WangY, YuanH,et al. Ensemble mean forecast skill and applications with the T213 Ensemble Prediction System[J]. Advances in Atmospheric Sciences, 2016, 33: 1 297-1 305.
49 TractonM S, DuJ. Application of the NCEP/EMC Short Range Ensemble Forecast system (SREF) to predicting extreme precipitation events[C]// The 81st AMS Annual Meeting. American Meteorological Society, Albuquerque, NM, 2001, 25: 64-70.
50 SobashR A, KainJ S, BrightD R, et al. Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts[J]. Weather & Forecasting,2011,5(26):714-728.
51 ChenChaoping, FengHanzhong, ChenJing. Application of Sichuan heavy rainfall ensemble prediction probability products based on Bayesian method[J]. Meteorological Monthly, 2010, 36(5): 22-39.
陈朝平, 冯汉中, 陈静. 基于贝叶斯方法的四川暴雨集合概率预报产品释用[J]. 气象, 2010, 36(5): 22-39.
52 LiFang. Probabilistic seasonal prediction of summer rainfall over East China based on multi-model ensemble schemes[J]. Acta Meteorologica Sinica, 2012, 70(2): 183-191.
李芳. 基于多模式集合方案的中国东部夏季降水概率季度预测[J]. 气象学报, 2012,70(2):183-191.
53 LiJun, DuJun, LiuYu. A comparison of initial condition-,multi-physics-and stochastic physics-based ensembles in predicting Beijing “7·21” excessive storm rain event[J]. Acta Meteorologica Sinica, 2015, 73(1): 50-71.
李俊, 杜钧, 刘羽. 北京“7·21”特大暴雨不同集合预报方案的对比试验[J]. 气象学报, 2015, 73(1): 50-71.
54 GhelliA, LalauretteF. Verifying precipitation forecasts using upscaled observations[J]. ECMWF Newsletter, 2000, 87: 9-17.
55 JonesP D, HortonE B, FollandC K, et al. The use of indices to identify changes in climate extremes[J]. Climatic Change, 1999, 42(1): 131-149.
56 KleinA M G, KonnenG P. Trends in indices of daily temperature and precipitation extremes in Europe[J]. Climate, 2003, 16(22): 3 665-3 680.
57 ZivB, HaratsN, MorinE, et al. Can severe rain events over the Mediterranean region be detected through simple numerical indices?[J]. Natural Hazards, 2016, 83: 1 197-1 212.
58 ChervenkovH, IvanT,KirilS. Drought events assessment and trend estimation—Results from the analysis of long-term time series of the standardized precipitation index[J]. Comptes Rendus de l’Académie Bulgare des Sciences, 2016, 69(8): 983-994.
59 LalauretteF. Early detection of abnormal weather conditions using a probabilistic extreme forecast index[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(594): 3 037-3 057.
60 YangPing, LiuWeidong, WangQiguang, et al. The climatic change trend and seasonal characteristics of daily temperature extremes in China for the latest 40 years[J]. Journal of Applied Meteorological Science, 2010, 21(1): 29-36.
杨萍, 刘伟东, 王启光, 等. 近40年我国极端温度变化趋势和季节特征[J]. 应用气象学报, 2010, 21(1): 29-36.
61 LalauretteF. Two Proposals to Enhance the EFI Response Near the Tails of the Climate Distribution[EB/OL]. 2003. [2018-06-20]. American Meteor Society,.
URL    
62 XiaFan, ChenJing. The research of extreme forecast index based on the T213 Ensemble Forecast and the experiment in predicting temperature[J]. Meteorological Monthly, 2012, 38(12): 1 492-1 501.
夏凡, 陈静. 基于T213集合预报的极端天气预报指数及温度预报应用试验[J]. 气象, 2012, 38(12) :1 492-1 501.
63 LaversD A, PappenbergerF, RichardsonD S, et al. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation[J]. Weather & Forecasting, 2017, 32(4): 11 852-11 858.
64 DutraE, DiamantakisM, TsonevskyI, et al. The extreme forecast index at the seasonal scale[J]. Atmospheric Science Letters, 2013, 14(4): 256-262.
65 GuanHong, ZhuYuejian. Development of verification methodology for extreme weather forecasts[J]. Weather and Forecasting, 2017, 32(2): 479-491.
66 LaversD A, ZsoterE, RichardsonD S, et al. An assessment of the ECMWF extreme forecast index for water vapor transport during Boreal winter[J]. Weather and Forecasting, 2017, 32(4): 1 667-1 674.
67 GlahnH R, LowryD A. The use of Model Output Statistics (MOS) in objective weather forecasting[J]. Journal of applied meteorology, 1972, 11(8): 1 203-1 211.
68 RoulstonM S, SmithL A. Combining dynamical and statistical ensembles[J]. Tellus, 2003,55A:16-30.
69 GneitingT, BalabdaouiF, RafteryA E. Probabilistic forecasts, calibration and sharpness[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69(2): 243-268.
70 RenHongli, JifanChou. Analogue correction method of errors by combining both statistical and dynamical methods together[J]. Acta Meteorologica Sinica, 2005, 63(6): 988-993.
任宏利, 丑纪范. 统计—动力相结合的相似误差订正法[J]. 气象学报, 2005, 63(6): 988-993.
71 RenHongli, JifanChou. Study progress in prediction strategy and methodology on numerical model[J]. Advances in Earth Science, 2007, 22(4): 376-385.
任宏利,丑纪范. 数值模式的预报策略和方法研究进展[J]. 地球科学进展,2007,22(4): 376-385.
72 RenHongli, JifanChou. Strategy and methodology of dynamical analogue prediction[J]. Science in China(Series D), 2007, 37(8): 1 101-1 109.
任宏利, 丑纪范. 动力相似预报的策略和方法研究[J]. 中国科学: D缉, 2007, 37(8): 1 101-1 109.
73 GaoLi, RenHongli, LiJianping,et al. Analogue correction method of errors and its application to numerical weather prediction[J]. Chinese Physics, 2006, 15(4): 882-889.
74 YuHaipeng, HuangJianping, JifanChou. Improvement of medium-range forecasts using the analog-dynamical method[J]. Monthly Weather Review, 2014, 142(4): 1 570-1 587.
75 BakhshaiiA, StullR. Deterministic ensemble forecasts using gene-expression programming[J]. Weather and Forecasting, 2009, 24(5) :1 431-1 451.
76 SatterfieldE A, BishopC H. Heteroscedastic Ensemble Post-Processing[J]. Monthly Weather Review, 2014, 142: 3 484-3 502.
77 MaXulin, ShiYang, HeJie, et al. The combined descending averaging bias correction based on the Kalman filter for ensemble forecast[J]. Acta Meteorologica Sinica, 2015, 73(5): 952-964.
马旭林, 时洋, 和杰, 等. 基于卡尔曼滤波递减平均算法的集合预报综合偏差订正[J]. 气象学报, 2015, 73(5): 952-964.
78 BaurF. Extended-Range weather forecasting[M]//Malone T F, eds. Compendium of Meteorology. Boston, MA: American Meteorological Society, 1951.
79 BaurF. Extended-range forecasting by weather types[M]// Compendium of Meteorology. Boston: American Meteor Society, 1951:814-833.
80 LorenzE N. Atmospheric predictability as revealed by naturally occurring analogues[J]. Journal of the Atmospheric Sciences, 1969, 26(4): 636-646.
81 ZoritaE, HughesJ P, LettemaierD P, et al. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation[J]. Journal of Climate, 1995, 8(5): 1 023-1 042.
82 LivezeyR E, BarnstonA G. An operational multifield analog/antianalog prediction system for United States seasonal temperatures: 1. System design and winter experiments[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(D9): 10 953-10 974.
83 GruzaG V, Ran’kovaE Y, Monitoring and probability forecast of monthly and seasonal variations in hemisphere atmospherical processes[C]//Proceedings of First WMO Workshop on the Diagnosis and Prediction of Monthly and Seasonal Atmospheric Variations over the Globe, vol II of Long-Range Forecasting WMO/TD 87. College Park, United States,1986.
84 ShenWenhai. Meteorological Informationization and Management Under the Cloud Era[M]. Beijing: Electronic Industry Press, 2017.
沈文海. 云时代下的气象信息化与管理[M]. 北京: 电子工业出版社,2017.
85 ZhangChengfu. On the application of artificial neural network for weather forecast[J]. Meteorological Monthly, 1994, 20(6): 43-47.
张承福. 人工神经网络在天气预报中的应用研究[J]. 气象,1994,20(6): 43-47.
86 JiangTianji, YuanZengren. Forward neural network with new activation function and the application on the weather forecast[J]. Information and Control, 1995, 24(1): 47-51.
姜天戟,袁曾任. 新激活函数下前馈型神经网络及其在天气预报中的应用[J]. 信息与控制,1995,24(1): 47-51.
87 JinLong, KuangXueyuan, HuangHaihong, et al. Study on the overfitting of the artificial neural network forecasting model[J]. Acta Meteorologica Sinica, 2004, 62(1): 62-70.
金龙,况雪源,黄海洪,等.人工神经网络预报模型的过拟合研究[J]. 气象学报,2004,62(1): 62-70.
88 WuQingjia, ZhangQingping, WanJian. Application of ANN in weather forecast[J]. Computer Engineering, 2005, 31(14): 176-177.
吴清佳,张庆平,万健. 遗传神经网络的智能天气预报系统[J]. 计算机工程,2005,31(14): 176-177.
89 ZhouYan. Intelligent Weather Forecast Based on Multi-model Fuzzy Neural Network[D]. Shanghai: Fudan University, 2007.
周岩. 基于多模型模糊神经网络的智能天气预报[D]. 上海:复旦大学,2007.
[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[3] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[4] 唐子剑, 康明, 李军. 基于勘探工程位置建模方法和储量估算[J]. 地球科学进展, 2017, 32(8): 839-849.
[5] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[6] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[7] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[8] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[9] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[10] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
[11] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[12] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[13] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[14] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
[15] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
阅读次数
全文


摘要