地球科学进展 ›› 2012, Vol. 27 ›› Issue (9): 993 -1005. doi: 10.11867/j.issn.1001-8166.2012.09.0993

黑河生态水文遥感试验 上一篇    下一篇

黑河流域生态水文传感器网络设计
晋 锐 1,李 新 1,阎保平 2,罗万明 2,李秀红 3,郭建文 1,马明国 1,亢 健 1,张艳林 1   
  1. 1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000; 2. 中国科学院计算机网络信息中心,北京 100190; 3. 北京师范大学,北京 100875
  • 收稿日期:2012-05-08 修回日期:2012-07-10 出版日期:2012-09-10
  • 通讯作者: 晋锐(1979-),女,山西临汾人,博士,副研究员,主要从事冻土遥感、土壤水分遥感和陆面数据同化研究.E-mail:jinrui@lzb.ac.cn
  • 基金资助:

    国家高技术研究发展计划重大项目“星机地综合定量遥感系统与应用示范(一期)”课题“遥感产品真实性检验关键技术及其试验验证”(编号:2012AA12A305)和“基于下一代互联网的科研信息基础设施建设和应用示范工程”课题“黑河流域生态水文遥感——地面观测试验与综合模拟应用示范”(编号:Y002025412);国家高技术研究发展计划项目“陆面模拟与同化系统示范研究”(编号:2009AA122104);国家自然科学基金项目“冻土主被动微波辐射传输模拟及其辐射散射特性研究”(编号:41071226)资助.

Introduction of Eco-hydrological Wireless Sensor Network in the Heihe River Basin

Jin Rui 1, Li Xin 1, Yan Baoping 2, Luo Wanming 2, Li Xiuhong 3, Guo Jianwen 1, Ma Mingguo 1, Kang Jian 1, Zhang Yanlin 1   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2.Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;3. Beijing Normal University, Beijing 100875, China
  • Received:2012-05-08 Revised:2012-07-10 Online:2012-09-10 Published:2012-09-10

在黑河上游八宝河流域和中游盈科灌区,以无线传感器网络为纽带,高效集成流域尺度内密集分布的、多源异构传感器的各种气象、水文及生态观测项目,建立自动化、智能化、时空协同的、各观测节点远程可控的生态水文传感器综合观测网络;通过优化地面采样方案,精细观测和准确度量流域尺度内空间异质性较强的关键水文生态要素的时空动态过程、时空变异性和不确定性;研究针对星载/机载遥感真实性检验的地面传感器采样方案,精细验证遥感反演精度,深入挖掘各种遥感手段在流域综合观测中的作用和潜力;全面提高流域水文生态过程的综合观测能力和观测自动化水平。

This paper gives an introduction about the ecohydrological wireless sensor network in the Heihe River Basin, including its background, observation objective, node type definition, data transfer mode, and the optimal spatial sampling strategy. All kinds of meteorological, hydrological and ecological observation sites distributed in both the Babaohe River Basin in the upstream and the Daman/Yingke irrigation districts in the middle stream of the Heihe River basin are integrated and communicated to the data center through the wireless transferring technique. An automatic, intelligent, and remotecontrollable ecohydrological wireless sensor network is established. Meanwhile, relevant researches about optimal spatial sampling strategy of the wireless sensor network nodes have been carried out to capture the spatialtemporal dynamics and spatial variations of the key ecohydrological parameters in the heterogeneity land or at remote sensing pixel scale. As a result, it is anticipated to improve the integrated, standardized and automated observation capability for the hydrological and ecological processes research at the basin scale.

中图分类号: 

[1]Gong Peng. Wireless sensor network as a new ground remote sensing technology for environmental monitoring[J]. Journal of Remote Sensing,2007, 11(4): 545-551.[宫鹏. 环境监测中无线传感器网络地面遥感新技术[J]. 遥感学报, 2007, 11(4): 545-551.]

[2]Tu GuoFang, Zhang Can, Heinrich Nimann, et al. Scalable video object coding and QoS control for next generation network. Communications and Computer Networks[J].Multimedia Communications,2005,11(3): 113-116.

[3]Hart J K, Martinez K. Environmental sensor networks: A revolution in the earth system science?[J]. Earth-Science Reviews, 2006, 78, 177-191.

[4]Van Zyl T L, Simonis I, McFerren G. The sensor web: Systems of sensor systems[J]. International Journal of Digital Earth, 2009, 2(1): 16-30.

[5]Delin K A, Jackson S P, Johnson D W, et al. Environmental studies with the SensorWeb: Principles and practice[J].Sensors, 2005, 5: 103-117.

[6]Butler R, Lay T, Creager K, et al. The global seismographic network surpasses its design goal[J]. EOS, 2004,85(23): 225-229.

[7]McPhaden M J. Evolution of the 2002-03 El Nio[J].Bulletin of the American Meteorological Society,2004,85: 677-695.

[8]De Roure D. Floodnet: A new flood warning system[J].Royal Academy of Engineering Quarterly, 2005, 23: 48-51.

[9]Rice R, Bales R C. Embedded-sensor network design for snow cover measurements around snow pillow and snow course sites in the Sierra Nevada of California[J].Water Resources Research,2010, 46, W03537. doi:10.1029/2008WR007318.

[10]Martinez K, Hart J K, Ong R. Environmental sensor networks[J].Computer, 2004, 37(8): 50-56.

[11]Szewczyk R, Osterweil E, Polastre J, et al. Habitat monitoring with sensor networks[J].Communications of the Association for Computing Machinery,2004, 47(6): 34-40.

[12]Gong Peng. Progress in recent environmental applications of wireless sensor networks[J]. Journal of Remote Sensing, 2010, 14(2): 387-395.[宫鹏. 无线传感器网络技术环境应用进展[J].遥感学报, 2010, 14(2): 387-395.]

[13]Barrenetxea G, Couach O, Krichane M, et al.  SensorScope: An environmental monitoring network[J]. Eos Transactions, American Geophysical Union, 2006,87(52): Fall Meet. Suppl., Abstract H51D-0513.

[14]Cayan D, VanScoy M, Dettinger M, et al.  The wireless watershed in Santa Margarita Ecological Reserve[J].Southwest Hydrology,2003,2: 18-19.

[15]Harmon T, Ambrose R, Gilbert R, et al.  High-resolution river hydraulic and water quality characteristics using rapidly deployable networked infomechanical systems (NIMS RD)[J].Environmental Engineering Science,2007,24(2):151-159.

[16]Andersen S A, Bales R C, Duffy C J. Critical zone observatories: Building a network to advance interdisciplinary study of Earth surface processes[J].Mineralogical Magazine,2008, 72(1): 7-10.

[17]Brantley S L, White T S, White A F, et al. Frontiers in Exploration of the Critical Zone: Report of a workshop sponsored by the National Science Foundation (NSF)[R]. Newark, DE: 2006.

[18]Consortium of Universities for the Advancement of Hydrologic Science. Hydrology of a Dynamic Earth[R]. Consortium of Universities for the Advancement of Hydrologic Science, Inc., 2007.

[19]Loescher H W, Jacobs J M, Wendroth O, et al. Enhancing water cycle measurements for future hydrologic research[J].Bulletin of the American Meteorological Society, 2007, 88(5): 669-676.

[20]NRC: Committee on the Review of Water and Environmental Research Systems (WATERS) Network, National Research Council. Review of the WATERS Network Science Plan[M].Washington DC:National Academies Press, 2010:88.

[21]Bonner J, Harmon T. Sensors and Sensor Networks: WATERS Network Project Office Sensors Committee Report[R]. WATERS Network Project Office Sensors Committee, 2007.

[22]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498.[李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展, 2012, 27(5): 481-498.]

[23]Kahn J M, Katz R H, Pister K S J. Emerging challenges: Mobile networking for “Smart Dust”[J].Journal of Communications and Networks,2000, 2(3): 188-196.

[24]NRC: Committee on Integrated Observations for Hydrologic and Related Sciences,  Integrating Multiscale Observations of U.S. Waters[M]. Washington DC:National Academies Press, 2008:210.

[25]Pan Xiaoduo, Tian Xiangjun, Li Xin, et al. Assimilating doppler radar velocity and reflectivity observations in the WRF model by four-dimensional variational data assimilation based on proper orthogonal decomposition[J].Journal of Geophysical Research, 2012,117,DXXXXX,doi:10.1029/2012JD017684,2012.

[26]Zhang Renhua. Quantitative Thermal Infrared Remote Sensing Model and Ground Experimental Basis[M]. Beijing: Science Press, 2009.[张仁华. 定量热红外遥感模型及地面实验基础[M]. 北京: 科学出版社, 2009.]

[27]Li Xiuhong, Cheng Xiao, Yan Ke, et al. A monitoring system for vegetable greenhouses based on a wireless sensor network[J].Sensors, 2010, 10: 8 963-8 980.

[28]Bogena H R, Herbst M, Huisman J A, et al. Potential of wireless sensor networks for measuring soil water content variability[J].Vadose Zone Journal, 2010,9:1-12.

[29]Ge Yong, Wang Jianghao, Gerard Heuvelink, et al. Sampling optimization design of a wireless sensor network for monitoring ecohydrological process in the Babaohe River Basin, China[J].Journal of Geophysical Research, 2012(Subwitted).

[30]Ge Yong, Wang Jianghao, Wang Jinfeng, et al. Regression kriging model-based sampling optimization design for the eco-hydrology wireless sensor network[J].Advances in Earth Science,2012, 27(9): 1 006-1 013.[葛咏,王江浩,王劲峰,等. 基于回归克里格的生态水文无线传感器网络布局优化[J].地球科学进展, 2012, 27(9): 1 006-1 013.]

[1] 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649.
[2] 夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
[3] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[4] 沈有信, 赵志猛, 毕胜春, 赵高卷, 刘娟. 陆地系统中的露石及其生态作用[J]. 地球科学进展, 2018, 33(4): 343-349.
[5] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[6] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[7] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[8] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[9] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[10] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[11] 冯起,苏永红,司建华,常宗强,席海洋,郭瑞,陈丽娟,霍红,秦燕燕. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196.
[12] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[13] 颉耀文,王学强,汪桂生,余林. 基于网格化模型的黑河流域中游历史时期耕地分布模拟[J]. 地球科学进展, 2013, 28(1): 71-78.
[14] 葛 咏,王江浩,王劲峰,晋 锐,胡茂桂. 基于回归克里格的生态水文无线传感器网络布局优化[J]. 地球科学进展, 2012, 27(9): 1006-1013.
[15] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
阅读次数
全文


摘要