地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 357 -366. doi: 10.11867/j.issn.1001-8166.2015.03.0357

上一篇    下一篇

黑河流域年冻融指数及其时空变化特征分析
曹斌 1( ), 张廷军 1, *( ), 彭小清 1, 郑雷 1, 牟翠翠 1, 王庆峰 2   
  1. 1 兰州大学资源环境学院, 甘肃兰州 730000
    2 中国科学院寒区旱区环境与工程研究所,甘肃兰州 730000
  • 出版日期:2015-04-08
  • 通讯作者: 张廷军 E-mail:caob08@lzu.edu.cn;jzhang@lzu.edu.cn
  • 基金资助:
    国家自然科学基金重大研究计划“黑河流域生态—水文过程集成研究”重点支持项目“黑河上游多年冻土区地表水、地下水过程及其效应研究”(编号:91325202)资助

Spatial Variability of Freezing-thawing Index over the Heihe River Basin

Cao Bin 1( ), Zhang Tingjun 1( ), Peng Xiaoqing 1, Zheng Lei 1, Mu Cuicui 1, Wang Qingfeng 2   

  1. 1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
    2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou Gansu 730000, China
  • Online:2015-04-08 Published:2015-03-20

利用黑河流域气象站点的逐日平均温度数据计算空气及地表冻融指数,并分析其变化趋势以及空间分布。结果表明,黑河流域空气冻结指数、空气融化指数、地表冻结指数和地表融化指数变化范围依次为:673~2 135 ℃·d,1 028~4 177 ℃·d, 682~1 702 ℃·d,1 956~5 278 ℃·d;黑河流域冻结指数出现明显的下降趋势,其中空气冻结指数(1951—2007年)下降速率为56.0℃·d/10a,地表冻结指数(1954—2005年)下降速率为35.4 ℃·d/10a;融化指数表现为上升,其中空气融化指数(1951—2008年)整体以每年47.8 ℃·d/10a的速率上升,地表融化指数在1954—1975年以135.9 ℃·d/10a的速率下降,在1976—2006年以185.3 ℃·d/10a的速率上升;黑河流域各站点冻结指数受海拔及纬度双重影响,而融化指数则主要受海拔影响;年平均气温与冻融指数有非常强的线性关系。

Air and ground freezing thawing index for stations in the Heihe River Basin were calculated based on daily mean temperature, and its variation characteristics and time series were analyzed. The results showed that, the freeing index over the Heihe River Basin were influenced by elevation and latitude while the thawing index mainly influenced by elevation;air freezing-thawing index and surface freezing-thawing index ranges were 673~2 135℃·d,1 028~4 177 ℃·d,682~1 702 ℃·d,1 956~5 278 ℃·d, respectively; freezing index exhibited decreasing trend and the slopes of air freezing index (1951—2007) and surface freezing index (1954—2005) were -56.0 ℃·d /10a and -35.4 ℃·d /10a; thawing index increased and the liner tendency of air thawing index was 47.8 ℃·d/10a during 1951—2008; surface thawing index decreased during 1954—1975 with a rate of -135.9 ℃·d /10a and increased during 1976—2006 with a rate of 185.3 ℃·d /10a. Freezing index was influenced by both elevation and latitude while thawing index was mainly controlled by elevation in the Heihe River Basin. We also found that there was a strong liner relationship between mean annual air temperature and freezing-thawing index.

中图分类号: 

图1 黑河流域及其周边气象站点分布
Fig. 1 Weather stations in Heihe River Basin and neighborhood
表1 缺测数据及插值情况
Tab 1 Miss dates and interpolation
图2 冻融指数及温度长时间序列距平
Fig 2 Freezing /thawing index and temperature time series with long-term mean indicated
表2 冻融指数长时间序列相关系数
Tab 2 Correlation coefficients between freezing/thawing index and time
表3 黑河流域冻融指数统计特征
Tab 3 Statistical features of the freezing-thawing index in Heihe River Basin
图3 黑河流域的年平均气温与冻融指数线性关系
Fig.3 Li near relationships between manual air average temperature and freezing-thawing index
表4 年平均气温与冻融指数线性方程归一化系数
Tab 4 Normalized coefficients of linear equations between manual air average temperature and freezing-thawing index
[1] Solomon Susan. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC[M]. Cambridge: Cambridge University Press, 2007.
[2] Nakawo Masayoshi, Fujita Koji, Ageta Yutaka, et al. Basic studies for assessing the impacts of the global warming on the Himalayan cryosphere, 1994-1996[J]. Bulletin of Glacier Research, 1997,(15): 53-58.
[3] He Yong, Wu Yongfeng, Liu Qiufeng. Vulnerability assessment of areas affected by Chinese cryospheric changes in future climate change scenarios[J]. Chinese Science Bulletin, 2012, 57(36): 4 784-4 790.
[4] Humbert Angelika. Cryospheric science: Vulnerable ice in the Weddell Sea[J]. Nature Geoscience, 2012,5(6):370-371.
[5] Overduin P P, Westermann S, Yoshikawa K, et al. Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea)[J]. Journal of Geophysical Research: Earth Surface(2003-2012), 2012, 117(F2):F02004,doi:10.129/2011JF002088.
[6] Zhang Tingjun. Progress in global permafrost and climate change studies[J]. Advances in Earth Science, 2012, 32(1): 27-38.
[张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27-38.]
[7] Zhou Youwu. Geocryology in China[M]. Beijing: Science Press, 2000.
[周幼吾. 中国冻土[M]. 北京:科学出版社, 2000.]
[8] Wu Qingbai, Liu Yongzhi. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2004, 38(2): 85-92.
[9] Charles H, Arenson L U, Christiansen H, et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3): 117-171.
[10] Wu Qingbai, Zhang Tingjun, Liu Yongzhi. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J]. Global and Planetary Change, 2010, 72(1): 32-38.
[11] Yang Meixue, Nelson Frederick E, Shiklomanov N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J]. Earth-Science Reviews, 2010, 103(1): 31-44.
[12] Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112(F2): F02S3, doi:10.1029/2006JF000631.
[13] Rowland J C, Jones C E, Altmann G, et al. Arctic landscapes in transition: Responses to thawing permafrost[J]. Eos, Transactions American Geophysical Union, 2010, 91(26): 229-230.
[14] Schuur Edward A G, Vogel Jason G, Crummer Kathryn G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459(7 246): 556-559.
[15] Schaefer K, Zhang Tingjun, Bruhwiler Lon, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus Series B—Chemical and Physical Meteorology, 2011, 63(2): 165-180.
[16] DeConto Robert M, Galeotti Simone, Pagani Mark, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7 392): 87-91.
[17] Hartman Charles W, Johnson Philip R. Environmental Atlas of Alaska[M]. Washington: University of Washington Press, 1984.
[18] Sturm Matthew, Holmgren J, Liston G E. A seasonal snow cover classi-cation system for local to global applications[J]. Journal of Climate, 1995, 8(5): 1 261-1 283.
[19] Frauenfeld Oliver W, Zhang Tingjun, Mccreight James L. Northern hemisphere freezing/thawing index variations over the twentieth century[J]. International Journal of Climatology, 2007, 27(1): 47-63.
[20] Nelson Frederick E, Outcalt Samuel I. A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 1987,19(3): 279-288.
[21] Steurer P M, Crandell J H. Comparison of methods used to create estimate of air-freezing index[J]. Journal of Cold Regions Engineering, 1995, 9(2): 64-74.
[22] Steurer P. Probability distributions used in 100-year return period of air-freezing index[J]. Journal of Cold Regions Engineering, 1996, 10(1): 25-35.
[23] Zhang Tingjun, Frauenfeld Oliver, Mccreight J, et al. Northern Hemisphere EASE-Grid Annual Freezing and Thawing Indices, 1901-2002[EB/OL].Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.[2015-03-03].
URL    
[24] Jiang Fengqing, Hu Ruji, Li Zhen. Variation trends of the freezing and thawing index along the Qinghai-Xizang Railway for the period 1966-2004[J]. Acta Geographica Sinica, 2007, 62(9): 935-945.
[姜逢清,胡汝骥,李珍. 青藏铁路沿线1966-2004年冻结与融化指数的变化趋势[J]. 地理学报, 2007, 62(9): 935-945.]
[25] Zhao Hongyan, Jiang Hao, Wang Keli, et al. The surface thawing-freezing indexs along the Qinghai-Tibet Railway:Analysis and calculation[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 617-622.
[赵红岩, 江灏,王可丽, 等. 青藏铁路沿线地表融冻指数的计算分析[J]. 冰川冻土, 2008, 30(4): 617-622.]
[26] Jiang Hao, Wang Dayong, Cheng Guodong, et al. A prediction for temperature and thawing-freezing index of roadbed along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 855-859.
[江灏, 王大勇, 程国栋, 等. 青藏铁路路基表面温度及融冻指数预测[J]. 冰川冻土, 2008, 30(5): 855-859.]
[27] Wang Genxu, Cheng Guodong. Land desertification statusand developing trend in the Heihe River Basin[J]. Journal of Desert Research,1999, (4):368-375.
[王根绪,程国栋. 黑河流域土地荒漠化及其变化趋势[J]. 中国沙漠, 1999, (4):368-375.]
[28] Wang Qingfeng, Zhang Tingjun, Wu Jichun, et al. Investigation on permafrost distribution over the upper rechaes of Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 19-29.
[王庆峰, 张廷军, 吴吉春, 等. 祁连山区黑河上游多年冻土分布考察[J]. 冰川冻土, 2013, 35(1): 19-29.]
[29] Peng Xiaoqing, Zhang Tingjun, Pan Xiaoduo, et al. Spatial and temporal variations of seasonally frozen ground over the Heihe River Basin of Qilian Mountain in Western China[J]. Advances in Earth Science, 2013, 28(4): 497-508.
[彭小清, 张廷军, 潘小多, 等. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.]
[30] Li Zhanling, Xu Zongxue. Detection of change points in temperature and precipitation time series in the Heihe River Basin over the past 50 years[J]. Resources Science, 2011, 33(10):1 877-1 882.
[李占玲, 徐宗学. 近50年来黑河流域气温和降水量突变特征分析[J]. 资源科学, 2011, 33(10):1 877-1 882.]
[31] Zhang Kai, Wang Runyuan, Han Haitao, et al. Hydrological and water resources effects under climate change in Heihe River Basin[J]. Resources Science, 2007, 29(1):77-83.
[张凯, 王润元, 韩海涛, 等. 黑河流域气候变化的水文水资源效应[J]. 资源科学, 2007, 29(1):77-83.]
[32] Li Changbin, Li Wenyan, Wang Xiongshi, et al. Characteristic changes in air temperature, precipitation and mountain runoff in the past 50 years in the middle and western reaches of Heihe River Basin[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(4):7-12.
[李常斌,李文艳,王雄师, 等. 黑河流域中、西部水系近50年来气温降水径流变化特征[J]. 兰州大学学报:自然科学版, 2011, 47(4):7-12.]
[33] Li Haiyan, Wang Keli, Jiang Hao, et al. Study of the preciption in the Heihe River Basin: Progress and prospect[J]. Journal of Glaciology and Cryology, 2009,31(2):334-341.
[李海燕, 王可丽, 江灏, 等. 黑河流域降水的研究进展与展望[J]. 冰川冻土, 2009, 31(2):334-341.]
[34] Ma Ning, Wang Naiang, Wang Penglong, et al. Temporal and spatial variation characteristics and quantification of the affect factors for reference evapotranspiration in Heihe River Basin[J]. Journal of Natural Resources, 2012, 27(6): 975-989.
[马宁, 王乃昂, 王鹏龙, 等. 黑河流域参考蒸散量的时空变化特征及影响因素的定量分析[J]. 自然资源学报, 2012, 27(6): 975-989.]
[35] Kerkering J. Mapping Past and Future Permafrost Extent on the North Slope Borough, Alaska[D].Durham: Duke University, 2008.
[36] Mu Cuicui, Zhang Tingjun, Cao Bin, et al. Study of the organic carbon storage in the active layer of permafrost over the Eboling Mountain in the upper reaches of the Heihe River Basin in the Easternd Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 1-9.
[牟翠翠, 张廷军, 曹斌, 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013, 35(1): 1-9.]
[37] Frauenfeld O W, Davis R E. Northern hemisphere circumpolar vortex trends and climate change implications[J]. Journal of Geophysical Research, 2003, 108(D14): 4 423.
[1] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[2] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[3] 许茜, 效存德, 冯雅茹, 杜志恒, 王磊, 魏志强. 微生物介导的热融湖碳循环关键过程研究进展[J]. 地球科学进展, 2023, 38(5): 470-482.
[4] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行 CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[5] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[6] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[7] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[8] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[9] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[10] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[11] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[12] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[13] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[14] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[15] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
阅读次数
全文


摘要