地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 551 -562. doi: 10.11867/j.issn.1001-8166.2023.027

院士论坛    下一篇

全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望
丁一汇 1( ), 柳艳菊 1( ), 徐影 1, 吴萍 1, 薛童 2, 汪靖 3, 石英 1, 张颖娴 1, 宋亚芳 1, 王朋岭 1   
  1. 1.中国气象局国家气候中心, 北京 100081
    2.中国气象局气象干部培训学院, 北京 100081
    3.天津市气象科学研究所, 天津 300074
  • 收稿日期:2023-03-27 修回日期:2023-05-06 出版日期:2023-06-10
  • 通讯作者: 柳艳菊 E-mail:dingyh@cma.gov.cn;liuyanj@cma.gov.cn
  • 基金资助:
    国家科技专项“第二次青藏高原综合科学考察研究”项目(2019QZKK010204-02);中国气象局重点创新团队“气候变化检测与应对”(CMA2022ZD03)

Regional Responses to Global Climate Change: Progress and Prospects for Trend, Causes, and Projection of Climatic Warming-Wetting in Northwest China

Yihui DING 1( ), Yanju LIU 1( ), Ying XU 1, Ping WU 1, Tong XUE 2, Jing WANG 3, Ying SHI 1, Yingxian ZHANG 1, Yafang SONG 1, Pengling WANG 1   

  1. 1.National Climate Centre, China Meteorological Administration, Beijing 100081, China
    2.China Meteorological Administration Training Centre, Beijing 100081, China
    3.Tianjin Institute of Meteorological Science, Tianjin 300074, China
  • Received:2023-03-27 Revised:2023-05-06 Online:2023-06-10 Published:2023-06-07
  • Contact: Yanju LIU E-mail:dingyh@cma.gov.cn;liuyanj@cma.gov.cn
  • About author:DING Yihui (1938-), male, Caoxian City, Shandong Province, Professor, Academician of Chinese Academy of Engineering. Research areas include Asian monsoon, climate change, and disastrous weather and climate in China. E-mail: dingyh@cma.gov.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK010204-02);The Key Innovation Team of China Meteorological Administration “Climate change detection and response”(CMA2022ZD03)

西北地区是中国西部大开发的主战场和重要的生态环境安全屏障区,该区气候变化直接影响到“一带一路”倡议实施中的水资源、生态和环境安全。在全球气候变化背景下,西北地区气候呈现出明显的“暖湿化”现象并呈东扩发展趋势,极端降水事件趋多趋强。一方面,降水量的增加有利于该地区的水资源可持续利用和生态环境保护;另一方面,极端降水的增加也对区域综合防灾减灾提出了新挑战。针对近年来备受关注的西北地区气候“暖湿化”问题,从其演变特征、形成原因和物理机制以及未来趋势预估等方面进行了总结和评述,归纳了已有的科学共识,并进一步剖析了当前研究中存在的问题和不足,最后对未来科学研究的重点方向进行了展望。对西北地区气候“暖湿化”趋势、成因及未来预估进行系统回顾,将对今后深入研究西北地区气候“暖湿化”问题具有重要的科学指导意义。

The Northwest region of China is a major battlefield and an important ecological and environmental security barrier to China’s western development. Flourishing the Belt and Road Initiative, climate change in this region has a direct impact on water resources, ecology, and environmental security. In the context of global climate change, Northwest China has shown an obvious and rapidly developing warming-wetting trend, which has resulted in increasingly prominent environmental and public security risks that are seriously affecting the sustainable development of the regional economy and society. This poses new challenges for climate change responses, water resource management, and disaster prevention and mitigation in this region. Research on the evolution characteristics, causes, and physical mechanisms of warming-wetting as well as its future trends and possible risks were reviewed. It further summarizes the current scientific consensus and existing problems, and finally looks forward to the key directions of future scientific research. A systematic review of the trend, causes, and future projection of climate warming-wetting in Northwest China will have important scientific implications for further research on this issue.

中图分类号: 

图1 19612022年中国西北地区平均气温(a)和降水量距平年际变化(b)(据参考文献[ 54 ]修改)
相对于1961—1990年,线性趋势拟合用虚线表示
Fig. 1 Inter-annual variation ofasurface air temperature andbprecipitation anomalies over northwest China from 1961 to 2022modified after reference 54 ])
Relative to 1961-1990, the linear trend fittings are shown in dotted lines
图2 19612022年中国西北地区年降水量变化趋势空间分布(据参考文献[ 52 ]修改)
Fig. 2 Spatial distribution of precipitation variation trend in northwest China for the period of 1961-2022modified after reference 52 ])
图3 11年滑动平均的印太—北大洋暖池指数回归的夏季(a850 hPa风场(矢量箭头,单位:m/s)、(b)整层水汽通量[矢量箭头,单位:kg/m·s)]及其散度[阴影,单位:10-5 kg/m2·s)]和(c)降水量(阴影,单位:mm 45
蓝色箭头和打点区域表示通过95%置信度检验,“A”和“C”分别表示异常的反气旋和气旋中心 45
Fig. 3 Regressions of the summera850 hPa windsvectorsunitm/s), (bvertical integrated water vapour transportvectorsunitkg/m·s)] and the divergence of water vapour transportshadingunit10-5 kg/m2·s)], andcprecipitationshadingunitmmagainst the 11-year running mean Indian-Pacific warm pool index 45
The blue arrow and black dots denote significance at the 95% confidence level, “A” and “C” denote the centres of anomalous anticyclone and cyclone, respectively 45
1 YE Duzheng, HUANG Ronghui. Advances, results and problems of the project “Investigation on laws, causes and predictions of droughts and in the Yellow River Valley and the Yangtze River Valley of China” [J]. Advances in Earth Science, 1991, 6(4): 24-29.
叶笃正, 黄荣辉. 我国长江、黄河两流域旱涝规律成因与预测研究的进展、成果与问题[J]. 地球科学进展, 1991, 6(4): 24-29.
2 ZHANG Qiang, HU Yinqiao, CAO Xiaoyan, et al. On some problems of arid climate system of northwest China[J]. Journal of Desert Research, 2000, 20(4): 357-362.
张强, 胡隐樵, 曹晓彦, 等. 论西北干旱气候的若干问题[J]. 中国沙漠, 2000, 20(4): 357-362.
3 QIAN Zheng’an, WU Tongwen, SONG Minhong, et al. Arid disaster and advances in arid climate researches over northwest China [J]. Advances in Earth Science, 2001, 16(1): 28-38.
钱正安, 吴统文, 宋敏红, 等. 干旱灾害和我国西北干旱气候的研究进展及问题[J]. 地球科学进展, 2001, 16(1): 28-38.
4 DING Yihui, WANG Shourong. Introduction to climate and ecological environment in northwest China [M]. Beijing: China Meteorological Press, 2001: 77-154.
丁一汇, 王守荣. 中国西北地区气候与生态环境概论[M]. 北京: 气象出版社, 2001: 77-154.
5 QIN Dahe. Assessment of environmental evolution in western China. volume 1: environmental characteristics and evolution in western China [M]. Beijing: Science Press, 2002: 248.
秦大河.中国西部环境演变评估:第一卷,中国西部环境特征及其演变[M]. 北京: 科学出版社, 2002: 248.
6 ZHANG Qiang, YANG Jinhu, WANG Pengling, et al. Progress and prospect on climate warming and humidification in northwest China [J]. Chinese Science Bulletin, 2023,68(14):1 814-1 828.
张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023,68(14):1 814-1 828.
7 ZHANG Qiang, YANG Jinhu, WANG Wei, et al. Climatic warming and humidification in the arid region of northwest China: multi-scale characteristics and impacts on ecological vegetation [J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
8 TRENBERTH K. Uncertainty in hurricanes and global warming [J]. Science, 2005, 308(5 729): 1 753-1 754.
94 STROEVE J C, MASLANIK J, SERREZE M C, et al. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010[J]. Geophysical Research Letters, 2011, 38(2). DOI:10.1029/2010GL045662 .
95 ZHAO Zongci, DING Yihui, XU Ying, et al. Detection and prediction of climate change for the 20th and 21st century due to human activity in Northwest [J]. Climatic and Environmental Research, 2003, 8(1): 26-34.
赵宗慈, 丁一汇, 徐影, 等. 人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测[J]. 气候与环境研究, 2003, 8(1): 26-34.
96 WANG Y, ZHOU B, QIN D, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: observation and projection [J]. Advances in Atmospheric Sciences, 2017, 34(3): 289-305.
97 GAO Xuejie, ZHAO Zongci, DING Yihui. Climate change due to greenhouse effects in northwest China as simulated by a regional climate model [J]. Journal of Glaciology and Geocryology, 2003, 25(2): 165-169.
高学杰, 赵宗慈, 丁一汇. 区域气候模式对温室效应引起的中国西北地区气候变化的数值模拟[J]. 冰川冻土, 2003, 25(2): 165-169.
98 WU J, HAN Z, LI R, et al. Changes of extreme climate events and related risk exposures in Huang-Huai-Hai river basin under 1.5-2°C global warming targets based on high resolution combined dynamical and statistical downscaling dataset [J]. International Journal of Climatology, 2021, 41(2): 1 383-1 401.
9 IPCC. Climate change 2021: the physical science basis [M]. Cambridge: Cambridge University Press, 2021.
10 SHI Yafeng, SHEN Yongping, HU Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China [J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226.
施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
11 SHI Yafeng, SHEN Yongping, LI Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China [J]. Quaternary Sciences, 2003, 23(2): 152-164.
施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
12 LI Dongliang, WEI Li, CAI Ying, et al. The present facts and the future tendency of the climate change in northwest China [J]. Journal of Glaciology and Geocryology, 2003, 25(2): 135-142.
李栋梁, 魏丽, 蔡英, 等. 中国西北现代气候变化事实与未来趋势展望[J]. 冰川冻土, 2003, 25(2): 135-142.
13 CHEN Y N, XU Z X. Plausible impact of global climate change on water resources in the Tarim River Basin[J]. Science in China Series D: Earth Sciences, 2005, 48(1): 65-73.
14 YANG Xiaodan, ZHAI Panmao. Changes in precipitation intensity, frequency and total in northwest China[J]. Science & Technology Review, 2005, 23(6): 24-26.
杨晓丹, 翟盘茂. 我国西北地区降水强度、频率和总量变化[J]. 科技导报, 2005, 23(6): 24-26.
15 CHEN Dongdong, DAI Yongjiu. Characteristics of northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5):923-935.
陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5):923-935.
16 ZHANG Qiang, ZHANG Cunjie, BAI Huzhi, et al. New development of climate change in northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28(1):1-7.
张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响: 总体暖干化, 局部出现暖湿迹象[J]. 干旱气象, 2010, 28(1):1-7.
17 WANG H J, CHEN Y N, CHEN Z S. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960-2010[J]. Hydrological Processes, 2013, 27(12): 1 807-1 818.
18 LI B F, CHEN Y N, SHI X, et al. Temperature and precipitation changes in different environments in the arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3): 589-596.
19 HUANG W, FENG S, CHEN J H, et al. Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China[J]. Journal of Climate, 2015, 28(9): 3 579-3 591.
20 MA Zhuguo, FU Congbin, YANG Qing, et al. Drying trend in northern China and its shift during 1951-2016[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 951-961.
马柱国, 符淙斌, 杨庆, 等. 关于我国北方干旱化及其转折性变化[J]. 大气科学, 2018, 42(4): 951-961.
21 XU Ying, DING Yihui, ZHAO Zongci. Scenario of temperature and precipitation changes in northwest China due to human activity in the 21st century [J]. Journal of Glaciology and Geocryology, 2003, 25(3): 327-330.
徐影, 丁一汇, 赵宗慈. 人类活动引起的我国西北地区21世纪温度和降水变化情景分析[J]. 冰川冻土, 2003, 25(3): 327-330.
22 SUN Ying, DING Yihui. A projection of future changes in summer precipitation and monsoon in East Asia [J]. Science in China Series D: Earth Sciences, 2009, 39(11): 1 487-1 504.
孙颖, 丁一汇.未来百年东亚夏季降水和季风预测的研究[J]. 中国科学D辑: 地球科学, 2009, 39(11): 1 487-1 504.
23 JIANG Dabang, SU Mingfeng, WEI Rongqing, et al. Variation and projection of drought and wet conditions in Xinjiang[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1):90-98.
姜大膀, 苏明峰, 魏荣庆, 等. 新疆气候的干湿变化及其趋势预估[J]. 大气科学, 2009, 33(1):90-98.
24 WU Jia, GAO Xuejie, SHI Ying, et al. Climate change over Xinjiang region in the 21st century simulated by a high resolution regional climate model [J]. Journal of Glaciology and Geocryology, 2011, 33(3): 479-487.
吴佳, 高学杰, 石英, 等. 新疆21世纪气候变化的高分辨率模拟[J]. 冰川冻土, 2011, 33(3): 479-487.
25 YU Entao, SUN Jianqi, Guanghui LÜ, et al. High-resolution projection of future climate change in the northwestern arid regions of China [J]. Arid Land Geography, 2015, 38(3): 429-437.
于恩涛, 孙建奇, 吕光辉, 等. 西部干旱区未来气候变化高分辨率预估[J]. 干旱区地理, 2015, 38(3): 429-437.
26 WU F T, WANG S Y, FU C B, et al. Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project[J]. Climate Research, 2016, 69(1): 45-58.
27 HUI P H, TANG J P, WANG S Y, et al. Climate change projections over China using regional climate models forced by two CMIP5 global models. part I: evaluation of historical simulations[J]. International Journal of Climatology, 2017, 38. DOI:10.1002/joc.5351 .
28 ZHANG Qiang, LIN Jingjing, LIU Weicheng, et al. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of northwest China during the flood season [J]. Science China: Earth Sciences, 2019, 49(12): 2 064-2 078.
张强, 林婧婧, 刘维成, 等. 西北地区东部与西部汛期降水跷跷板变化现象及其形成机制研究[J]. 中国科学: 地球科学, 2019, 49(12): 2 064-2 078.
29 LI Z, LIU H H. Temporal and spatial variations of precipitation change from southeast to northwest China during the period 1961-2017[J]. Water, 2020, 12(9). DOI:10.3390/w12092622 .
30 WANG Q, ZHAI P M, QIN D H. New perspectives on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11(3): 252-260.
31 WANG Chenghai, ZHANG Shengning, ZHANG Feimin, et al. On the increase of precipitation in the northwestern China under the global warming [J]. Advances in Earth Science, 2021, 36(9): 980-989.
王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
32 YAO Junqiang, CHEN Jing, DILINUER Tuoliwubieke, et al. Trend of climate and hydrology change in Xinjiang and its problems thinking [J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1 498-1 511.
姚俊强, 陈静, 迪丽努尔•托列吾别克, 等. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1 498-1 511.
33 LU S, HU Z Y, YU H P, et al. Changes of extreme precipitation and its associated mechanisms in northwest China[J]. Advances in Atmospheric Sciences, 2021, 38(10): 1 665-1 681.
34 LU B, LI H Y, WU J, et al. Impact of El Niño and Southern Oscillation on the summer precipitation over northwest China[J]. Atmospheric Science Letters, 2019, 20(8). DOI:10.1002/asl.928 .
35 QIN M H, LI D L, DAI A G, et al. The influence of the pacific decadal oscillation on north central China precipitation during boreal autumn[J]. International Journal of Climatology, 2018, 38. DOI:10.1002/joc.5410 .
36 QIN M H, DAI A G, LI D L, et al. Understanding the inter-decadal variability of autumn precipitation over north central China using model simulations[J]. International Journal of Climatology, 2020, 40(2): 874-886.
37 ZHU Y L, LIU Y, WANG H J, et al. Changes in the interannual summer drought variation along with the regime shift over northwest China in the late 1980s[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2 868-2 881.
38 MA Pengli, YANG Jinhu, LU Guoyang, et al. The transitional change of climate in the east of northwest China [J]. Plateau Meteorology, 2020, 39(4): 840-850.
马鹏里, 杨金虎, 卢国阳, 等.西北地区东部气候的转折性变化[J]. 高原气象, 2020, 39(4): 840-850.
39 SHANG S S, ZHU G F, LI R L, et al. Decadal change in summer precipitation over the east of northwest China and its associations with atmospheric circulations and sea surface temperatures[J]. International Journal of Climatology, 2020, 40(8): 3 731-3 747.
40 NING G C, LUO M, ZHANG Q, et al. Understanding the mechanisms of summer extreme precipitation events in Xinjiang of arid northwest China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(15). DOI:10.1029/2020JD034111 .
41 ZHANG Qiang, ZHU Biao, YANG Jinhu, et al. New characteristics of climate humidification trends in northwest China [J]. Science Bulletin, 2021, 66(28/29): 3 757-3 771.
张强, 朱飙, 杨金虎, 等.西北地区气候湿化趋势的新特性[J]. 科学通报, 2021, 66(28/29): 3 757-3 771.
42 CHEN C, ZHANG X, LU H, et al. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades [J]. International Journal of Climatology, 2021, 41(2): 1 024-1 038.
43 MA Qianrong. Multiscale characteristics and impact mechanism of summer extreme precipitation changes in Central Asia [D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
马茜蓉. 中亚夏季极端降水变化的多尺度特征及影响机理[D]. 南京:南京信息工程大学, 2021.
44 ZENG Z X, SUN J Q. Decadal change of extreme consecutive dry days in spring over the middle and lower reaches of the Yangtze River around the early 2000s: the synergistic effect of mega-El Niño/Southern Oscillation, Atlantic Multidecadal Oscillation, and Arctic Sea ice[J]. Atmospheric Research, 2022, 266. DOI:10.1016/j.atmosres.2021.105936 .
45 WU P, LIU Y J, DING Y H, et al. Modulation of sea surface temperature over the North Atlantic and Indian-Pacific warm pool on interdecadal change of summer precipitation over northwest China[J]. International Journal of Climatology, 2022, 42(16): 8 526-8 538.
46 XUE T, DING Y H, LU C H. Interdecadal variability of summer precipitation in northwest China and associated atmospheric circulation changes[J].Journal of Meteorological Research, 2022, 36(6): 824-840.
47 WANG S S, HUANG J P, HUANG G, et al. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11). DOI:10.1029/2022JD036533 .
48 YU Entao, SUN Jianqi. Extreme temperature projection over northwestern China based on multiple regional climate models[J]. Transactions of Atmospheric Sciences, 2019, 42(1):46-57.
于恩涛, 孙建奇. 基于多区域模式集合的中国西部干旱区极端温度未来预估[J]. 大气科学学报, 2019, 42(1):46-57.
49 PAN X D, ZHANG L, HUANG C L. Future climate projection in northwest China with RegCM4.6[J]. Earth and Space Science, 2020, 7(2). DOI:10.1029/2019EA000819 .
50 QIN J C, SU B D, TAO H, et al. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China[J]. Frontiers of Earth Science, 2021, 15(1): 23-37.
51 WANG Zhengqi, GAO Xuejie, TONG Yao, et al. Future climate change projection over Xinjiang based on an ensemble of regional climate model simulations [J]. Chinese Journal of Atmospheric Sciences, 2021, 45(2): 407-423.
王政琪, 高学杰, 童尧, 等. 新疆地区未来气候变化的区域气候模式集合预估[J]. 大气科学, 2021, 45(2): 407-423.
52 WANG Q, ZHAI P M. CMIP6 projections of the “warming-wetting” trend in northwest China and related extreme events based on observational constraints[J]. Journal of Meteorological Research, 2022, 36(2): 239-250.
53 ZHANG Shiyan, HU Yongyun, LI Zhibo. Recent changes and future projection of precipitation in northwest China [J]. Climate Change Research, 2022, 18(6): 683-694.
张诗妍, 胡永云, 李智博. 我国西北降水变化趋势和预估[J]. 气候变化研究进展, 2022, 18(6): 683-694.
54 ZHANG Q, YANG J, DUAN X, et al. The eastward expansion of the climate humidification trend in Northwest China and the synergistic influences on the circulation mechanism[J]. Climate Dynamics, 2022, 59: 2 481-2 497.
55 LIN Shu, LI Hongying, DANG Bing, et al. The latest evidences of a warm-wet climatic shift in Hexi Corridor, Gansu[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1 111-1 121.
林纾, 李红英, 党冰, 等. 甘肃河西走廊地区气候暖湿转型后的最新事实[J]. 冰川冻土, 2014, 36(5): 1 111-1 121.
56 LI Q, CHEN Y, SHEN Y, et al. Spatial and temporal trends of climate change in Xinjiang, China [J]. Journal of Geographical Sciences, 2011, 21(6): 1 007-1 018.
57 REN Guoyu, YUAN Yujiang, LIU Yanju, et al. Changes in precipitation over northwest China[J]. Arid Zone Research, 2016, 33(1): 1-19.
任国玉, 袁玉江, 柳艳菊, 等. 我国西北干燥区降水变化规律[J]. 干旱区研究, 2016, 33(1): 1-19.
58 LI B F, CHEN Y N, CHEN Z S, et al. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?[J]. Atmospheric Research, 2016, 167: 275-284.
59 GENG Q L, WU P T, ZHAO X N. Spatial and temporal trends in climatic variables in arid areas of northwest China[J]. International Journal of Climatology, 2016, 36(12): 4 118-4 129.
60 YANG P, XIA J, ZHANG Y Y, et al. Temporal and spatial variations of precipitation in northwest China during 1960-2013[J]. Atmospheric Research, 2017, 183: 283-295.
61 YANG P, XIA J, ZHANG Y, et al. Drought assessment in northwest China during 1960-2013 using the standardized precipitation index[J]. Climate Research, 2017, 72(1): 73-82.
62 WU P, DING Y H, LIU Y J, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over northwest China[J]. International Journal of Climatology, 2019, 39(14): 5 241-5 255.
63 LIU Weicheng, ZHANG Qiang, FU Zhao. Variation characteristics of precipitation and its affecting factors in northwest China over the past 55 years [J]. Plateau Meteorology, 2017, 36(6): 1 533-1 545.
刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1 533-1 545.
64 HUANG Xiaoyan, LI Yaohui, FENG Jianying, et al. Climate characteristics of precipitation and extreme drought events in northwest China[J]. Acta Ecologica Sinica, 2015, 35(5): 1 359-1 370.
黄小燕, 李耀辉, 冯建英, 等. 中国西北地区降水量及极端干旱气候变化特征[J]. 生态学报, 2015, 35(5): 1 359-1 370.
65 HAN T T, GUO X Y, ZHOU B T, et al. Recent changes in heavy precipitation events in northern central China and associated atmospheric circulation[J].Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(2): 301-310.
66 WANG Chenghai, ZHANG Shengning, LI Kechen, et al. Change characteristics of precipitation in northwest China from 1961 to 2018[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 713-724.
王澄海, 张晟宁, 李课臣, 等. 1961—2018年西北地区降水的变化特征[J]. 大气科学, 2021, 45(4): 713-724.
67 Xinjiang Uygur Autonomous Region Climate Center. Xinjiang climate change monitoring bulletin [R]. 2021.
新疆维吾尔自治区气候中心. 新疆气候变化监测公报[R]. 2021.
68 HUO Z L, DAI X Q, FENG S Y, et al. Effect of climate change on reference evapotranspiration and aridity index in arid region of China[J]. Journal of Hydrology, 2013, 492: 24-34.
69 YANG L S, FENG Q, ADAMOWSKI J F, et al. Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA[J]. Atmospheric Research, 2020, 238. DOI: 10.1016/j.atmosres.2020.104868 .
70 LI Z, CHEN Y N, SHEN Y J, et al. Analysis of changing pan evaporation in the arid region of northwest China[J]. Water Resources Research, 2013, 49(4): 2 205-2 212.
71 XING W Q, WANG W G, SHAO Q X, et al. Periodic fluctuation of reference evapotranspiration during the past five decades: does evaporation paradox really exist in China?[J]. Scientific Reports, 2016, 6(1): 1-12.
72 HUANG Xiaoyan, ZHANG Mingjun, JIA Wenxiong, et al. Variations of surface humidity and its influential factors in northwest China[J]. Advances in Water Science, 2011, 22(2): 151-159.
黄小燕, 张明军, 贾文雄, 等. 中国西北地区地表干湿变化及影响因素[J]. 水科学进展, 2011, 22(2): 151-159.
73 YANG P, XIA J, ZHAN C S, et al. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in northwest China during 1960-2014[J]. Theoretical and Applied Climatology, 2018, 132(1): 167-180.
74 ZHAO H H, PAN X B, WANG Z W, et al. What were the changing trends of the seasonal and annual aridity indexes in northwestern China during 1961-2015?[J]. Atmospheric Research, 2019, 222: 154-162.
75 DENG H X, TANG Q H, YUN X B, et al. Wetting trend in northwest China reversed by warmer temperature and drier air[J]. Journal of Hydrology, 2022, 613. DOI:10.1016/j.jhydrol.2022.128435 .
76 LI Y, DING Y H, LI W J. Interdecadal variability of the Afro-Asian summer monsoon system[J]. Advances in Atmospheric Sciences, 2017, 34(7): 833-846.
77 QIN Dahe, ZHAI Panmao. Evolution of climate and ecological environment in China: 2021 (volume I—scientific basis)[M]. Beijing: Science Press, 2021.
秦大河, 翟盘茂. 中国气候与生态环境演变:2021(第一卷科学基础)[M]. 北京: 科学出版社, 2021.
78 PENG D D, ZHOU T J, ZHANG L X, et al. Human contribution to the increasing summer precipitation in central Asia from 1961 to 2013[J]. Journal of Climate, 2018, 31(19): 8 005-8 021.
79 SHI C, JIANG Z H, ZHU L H, et al. Risks of temperature extremes over China under 1.5℃ and 2℃ global warming[J]. Advances in Climate Change Research, 2020, 11(3): 172-184.
80 SONG F F, ZHOU T J, QIAN Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models[J]. Geophysical Research Letters, 2014, 41(2): 596-603.
81 ZHAI P M, ZHOU B Q, CHEN Y. A review of climate change attribution studies[J]. Journal of Meteorological Research, 2018, 32(5): 671-692.
82 YU Yaxun, WANG Jinsong, LI Qingyan. Spatial and temporal distribution of water vapor and its variation trend in atmosphere over northwest China [J]. Journal of Glaciology and Geocryology, 2003, 25(2): 149-156.
俞亚勋, 王劲松, 李青燕. 西北地区空中水汽时空分布及变化趋势分析[J]. 冰川冻土, 2003, 25(2): 149-156.
83 JIN Liya, FU Jiaolan, CHEN Fahu. Spatial and temporal distribution of water vapor and its relationship with precipitation over northwest China [J]. Journal of Lanzhou University (Natural Sciences), 2006, 42(1): 1-6.
靳立亚, 符娇兰, 陈发虎. 西北地区空中水汽输送时变特征及其与降水的关系[J]. 兰州大学学报(自然科学版), 2006, 42(1): 1-6.
84 YAO J, YANG Q, MAO W, et al. Precipitation trend-elevation relationship in arid regions of the China [J]. Global and Planetary Change, 2016, 143: 1-9.
85 YAO J Q, CHEN Y N, ZHAO Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585. DOI:10.1016/j.jhydrol.2020.124823 .
86 WANG Keli, JIANG Hao, ZHAO Hongyan. Atmospheric water vapor transport from westerly and monsoon over the northwest China [J]. Advances in Water Science, 2005, 16(3): 432-438.
王可丽, 江灏, 赵红岩.西风带与季风对中国西北地区的水汽输送[J]. 水科学进展, 2005, 16(3): 432-438.
87 LIU Yuzhi, WU Chuqiao, JIA Rui, et al. An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia [J]. Science China: Earth Sciences, 2018, 48(9): 1 141-1 152.
刘玉芝, 吴楚樵, 贾瑞, 等. 大气环流对中东亚干旱半干旱区气候影响研究进展[J]. 中国科学: 地球科学, 2018, 48(9): 1 141-1 152.
88 WANG C Z. Three-ocean interactions and climate variability: a review and perspective[J].Climate Dynamics, 2019, 53(7/8): 5 119-5 136.
89 DING Y H, WU P, LIU Y J. Modulation of sea surface temperature in three oceans on precipitation increase over northwest China during the past 60 years: a review[J]. Frontiers in Climate, 2022, 4. DOI:10.3389/fclim.2022.1015225 .
90 ZHAO Y, HUANG A, ZHOU Y, et al. Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China [J]. Journal of Climate, 2014, 27(12): 4 721-4 732.
91 ZHOU Y, HUANG A, ZHAO Y, et al. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang [J]. Theoretical and Applied Climatology, 2015, 119(3): 781-789.
92 ZHAO Y, ZHANG H. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia [J]. Climate Dynamics, 2016, 46(9): 3 223-3 238.
93 SCREEN J A, SIMMONDS I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification [J]. Geophysical Research Letters, 2010, 37(16). DOI: 10.1029/2010GL044136 .
[1] 毛绪美, 查希茜. 50~1 000 a地下水定年新方法:放射性成因 32P[J]. 地球科学进展, 2023, 38(6): 610-618.
[2] 朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球 1.5/2.0 °C变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.
[3] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[4] 贾明瑞, 张晋韬, 王芳. 《巴黎协定》未来气候情景下“一带一路”沿线区域气候舒适度预估[J]. 地球科学进展, 2022, 37(5): 505-518.
[5] 张小梅, 靳鹤龄, 刘冰, 梁晓磊, 梁爱民, 孙爱军. 末次盛冰期以来库布齐沙漠有效湿度变化及其对全球变化的响应[J]. 地球科学进展, 2022, 37(12): 1232-1244.
[6] 王晓宁, 岳大鹏, 赵景波. 榆林西南部下白垩统砂岩粒度组成与成因分析[J]. 地球科学进展, 2022, 37(10): 1088-1100.
[7] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[8] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[9] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[10] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[11] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[12] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[13] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[14] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[15] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
阅读次数
全文


摘要