地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 993 -1003. doi: 10.11867/j.issn.1001-8166.2021.076

沉积改造进展 上一篇    下一篇

鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成
鲍园 1( ), 唐佳阳 2, 琚宜文 3( ), 安超 1   
  1. 1.西安科技大学煤炭绿色开采地质研究院,西安科技大学地质与环境学院,陕西 西安 710054
    2.中煤西安设计工程有限责任公司,陕西 西安 710054
    3.中国科学院计算地球动力学 重点实验室,中国科学院大学地球与行星科学学院,北京 100049
  • 收稿日期:2021-01-29 修回日期:2021-07-06 出版日期:2021-10-10
  • 通讯作者: 琚宜文 E-mail:y.bao@foxmail.com;juyw03@163.com
  • 基金资助:
    国家自然科学基金项目“低阶煤生物气化过程中微纳米孔隙与大分子结构演化及其耦合机理”(41972183);西安科技大学煤炭绿色开采地质研究院项目“鄂尔多斯盆地煤油气富集及其共伴生关系研究”(MTy2019-12)

Tectonic-Thermal Evolution and Biogas Generation of Source Rocks from the Mesozoic Coal Measures at the Huangling Mining Area, Southeastern Margin of Ordos Basin

Yuan BAO 1( ), Jiayang TANG 2, Yiwen JU 3( ), Chao AN 1   

  1. 1.Geological Research Institute for Coal Green Mining,College of Geology and Environment,Xi'an University of Science and Technology,Xi'an 710054,China
    2.China Coal Xi'an Design Engineering Co. ,Ltd. Xi'an 710054,China
    3.Key Laboratory of Computational Geodynamics,Chinese Academy of Sciences,College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-01-29 Revised:2021-07-06 Online:2021-10-10 Published:2021-11-19
  • Contact: Yiwen JU E-mail:y.bao@foxmail.com;juyw03@163.com
  • About author:BAO Yuan (1983-), male, Pizhou City, Jiangsu Province, Associate Professor. Research areas include unconventional petroleum and natural gas geology. E-mail: y.bao@foxmail.com
  • Supported by:
    the National Natural Science Foundation of China "Research on the coupling mechanism and evolution of micro-nano pores and macromolecular structures of low-rank coal during the process of bioconversion"(41972183);Geological Research Institute for Coal Green Mining of Xi'an University of Science and Technology "Study on coal and gas enrichment and its co-associated relationship in Ordos basin"(MTy2019-12)

煤系烃源层的构造—热演化过程研究对揭示煤系气的生成机制具有重要意义。为揭示鄂尔多斯盆地东南缘黄陵矿区向斜核部中生代煤系烃源层的构造—热演化过程、生排烃阶段及煤系气成因类型,根据含煤地层岩性、剩余地层现今埋深、储层孔隙度、镜质组最大反射率、甲烷碳氢同位素组成和生物甲烷产率等数据,运用Petromod 1D模拟软件与回剥反演法及EASY% RO法对研究区煤系烃源岩的受热和生烃演化过程进行重建。研究结果表明:黄陵矿区自晚三叠世以来,煤系主要经历了3~4次“沉降—抬升”过程,其生烃演化过程可分为原生生物成因气、热成因气和次生生物成因气3个阶段。晚三叠世末期至中侏罗世早期,煤系烃源岩镜质组最大反射率演化至0.3%,对应原生生物成因气生成阶段;中侏罗世早期至早白垩世末期,煤系埋深及受热温度逐渐升高至最大值,镜质组最大反射率演化至0.67%~0.74%,热解生烃作用停止,对应热成因气生成阶段;自始新世早期至今,煤系发生抬升且埋深浅于2 077~2 148 m,受热温度低于75 ℃,对应次生生物成因气生成阶段。侏罗系延安组3号和2号煤层中甲烷碳、氢同位素组成数据和微生物降解煤岩生成生物气实验(甲烷累计产率为10.5~16.1 μmol/g)为该区存在次生生物成因气提供了直接证据。

Research on the tectonic and thermal evolution of coal measures' source rocks is of great significance for revealing the generation mechanism of coal-measures gas. To reveal the process of tectonic-thermal evolution, the stage of hydrocarbon generation and expulsion, and the genetic types of the coal-measure gas, the thermal and hydrocarbon generation evolution histories of the source rocks in the Mesozoic coal measures in the Huangling mining area were studied in this paper, based on the data of lithology, buried depth, porosity, maximum vitrinite reflectance, carbon and hydrogen isotopic compositions of methane and biogas yield and with the use of the methods of Petromod 1D simulation, back-stripping inversion, and EASY% RO. The results show that the Mesozoic coal measures experience thrice-quartic "subsidence-uplift" stages in the Huangling mining area since the beginning sedimentation at the Late Triassic. The hydrocarbon generation process can be divided into three phases. The first stage is the primary biogas generation period during the Late Triassic to the early middle Jurassic. The maximum vitrinite reflectance evolved to 0.3%. In the second period of thermogenic gas generation during the early Middle Jurassic to late Early Cretaceous, the burial depth and thermal temperature of the coal measures continuously increased to the highest level at the end of the Early Cretaceous. The maximum vitrinite reflectance evolved to 0.67%~ 0.74%. In the third period of secondary biogas generation during Early Eocene so far, the coal measures' burial depth is uplifted to 2 077~2 148 m, and the thermal temperature is decreased to less than 75 ℃. The data of the carbon and hydrogen isotopic composition of methane and the accumulatively generated methane amount of 10.5~16.1 μmol/g during the experiment of microbial degradation No. 2 and No. 3 coal provide evidence for the occurrence of secondary biogenic gas in the Huangling mining area.

中图分类号: 

图1 鄂尔多斯盆地区域构造(a)、黄陵矿区二号煤矿井田构造(b 12 及其含煤地层综合柱状图(c
Fig. 1 Tectonic maps of the Ordos Basin a and No.2 coal mine in the Huangling mining area b 12 as well as column chart of coal measures c in the Huangling mining area
表1 鄂尔多斯盆地东南缘黄陵矿区 R113井计算含煤地层信息
Table 1 Calculation result of coal measures based on Well R113 in the Huangling mining area of southeastern margin of Ordos Basin
表2 黄陵矿区 R113井主要地层不同时期埋深恢复结果
Table 2 Results of burial depth at different periods of the main formation at Well R113 in the Huangling mining area
图2 黄陵矿区R113井地层回剥柱状剖面图
Fig. 2 Restriated columnar profile of Well R113 in the Huangling mining area
图3 黄陵矿区中生代煤系构造—埋藏演化历史曲线
Fig. 3 Calibration curve of evolution of tectonic-burial history of Mesozoic coal measures in the Huangling mining area
图4 黄陵矿区煤系抬升速率(a)与沉积速率(b)直方图
Fig. 4 Histogram of lifting rate a and sedimentation rate b of coal measures in the Huangling mining area
图5 黄陵矿区煤系烃源岩受热史演化曲线
Fig. 5 Evolution curve of the thermal history of coal measure source rock in the Huangling mining area
图6 黄陵矿区煤系烃源岩成熟史演化曲线
Fig. 6 Evolution curve of mature history of coal measure source rock in the Huangling mining area
表3 煤系烃源岩中甲烷碳氢同位素测定表
Table 3 Methane carbon and hydrogen isotopes determination result of source rock in coal measures
图7 煤层气体的δ13CCH 4 -δDCH 4 关系图 1
Fig. 7 Relationship of carbon and hydrogen isotopes of coalbed methane 1
图8 模拟产出生物甲烷累计产量变化曲线
图中数据点为3个平行样的平均值
Fig. 8 Evolution curve of biogenic methane cumulative yield during the process of biodegradation
The data points are the average values of the three parallel samples in the figure
1 BAO Y, WANG W, MA D, et al. Gas origin and constraint of δ13C(CH4) sistribution in the Dafosi mine field in the southern margin of the Ordos Basin, China[J]. Energy & Fuels, 2020, 34(11): 14 065-14 073.
2 BAO Y, WEI C, NEUPANE B. Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 262-270.
3 BAO Yuan, WEI Chongtao, WANG Chaoyong, et al. Simulation of geological evolution history of the upper Permian coal seam No.8 in Shuigonghe syncline, Zhina coalfield, Guizhou[J]. Coal Geology & Exploration, 2012, 40(6): 13-23.
鲍园, 韦重韬, 王超勇, 等. 贵州织纳煤田水公河向斜上二叠统8煤层三史模拟[J]. 煤田地质与勘探, 2012, 40(6): 13-23.
4 LI Xingwei. Numerical simulations of the burial & thermal histories for Daqing Placanticling in north Songliao Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(1): 46-50.
李兴伟. 松辽盆地北部大庆长恒埋藏史、热史模拟[J]. 大庆石油地质与开发, 2015, 34(1): 46-50.
5 GOTTARDI R, ADAMS L M, BORROK D, et al. Hydrocarbon source rock characterization, burial history, and thermal maturity of the Steele, Niobrara and Mowry Formations at Teapot Dome,Wyoming[J]. Marine and Petroleum Geology, 2019, 100: 326-340.
6 YU K, JU Y, ZHANG B. Modeling of tectono-thermal evolution of Permo-Carboniferous source rocks in the southern Qinshui Basin, China: consequences for hydrocarbon generation[J]. Journal of Petroleum Science and Engineering, 2020, 193: 1-13.
7 MENG Q, WU G, FAN L, et al. Tectonic evolution of early Mesozoic sedimentary basins in the North China block[J]. Earth-science Reviews, 2019, 190: 416-438.
8 YU K, JU Y, QIAN J, et al. Burial and thermal evolution of coal-bearing strate and its mechanisms in the southern North China Basin since the late Paleozoic[J]. International Journal of Coal Geology, 2018, 198: 100-115.
9 TANG Enxian, DU Tianlin, LI Chuan, et al. Study on logging recognition for coal seam surrounding rock oil and gas in Huang-ling coal mining area[J]. Safety in Coal Mines, 2016, 500(4): 32-34.
唐恩贤, 杜天林, 李川, 等. 黄陵矿区煤层围岩油气测井识别研究[J]. 煤矿安全, 2016, 500(4): 27-34.
10 ZHENG Guiqiang, WANG Bo, LI Jingming, et al. Study on dominant characteristics and rules for CBM enrichment in Huangling mining area in Shaanxi[J]. China Coalbed Methane, 2009, 6(1): 19-21.
郑贵强, 王勃, 李景明, 等. 陕西黄陵矿区煤层气富集主控特征与富集规律研究[J]. 中国煤层气, 2009, 6(1): 19-21.
11 TANG Enxian. Genetic type of abnormal gas emission from coal seam floor in Huangling mining area[J]. Coal Geology & Exploration, 2015, 43(6): 8-11.
唐恩贤. 黄陵矿区煤层底板异常涌出气体成因类型[J]. 煤田地质与勘探, 2015, 43(6): 8-11.
12 LIU Xi, LI Wenhou. The sedimentology and chronology study on the Middle-Late Triassic strata of the Qinshui Basin and its significance for the restoration of the prototype Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2020, 50(3): 480-489.
刘溪,李文厚. 沁水盆地中晚三叠世地层沉积学、年代学研究及其对恢复鄂尔多斯原型盆地的意义[J]. 西北大学学报:自然科学版, 2020, 50(3): 480-489.
13 LI Panfeng, MA Yangyang, WANG Fuguo, et al. Coal No.2 coal petrology and coal facies characteristic analysis in Huang-ling mining area[J]. Coal Geology of China, 2014, 26(12): 24-27.
李攀峰, 马杨洋, 王福国, 等. 黄陵矿区2#煤层煤岩及煤相特征分析[J]. 中国煤炭地质, 2014, 26(12): 24-27.
14 ZHONG Ke. Study on geological hazards risk assessment of Huang Ling mining area[D]. Xi'an: Xi'an University of Science and Technology, 2009.
种可. 黄陵矿区地质灾害危险性评价研究[D]. 西安: 西安科技大学, 2009.
15 DONG Zhenyu. Study on the characteristics of land collapase and failure law of overlying strata in coal face of Huangling mining area[D]. Xi'an: Xi'an University of Science and Technology, 2010.
董震雨. 黄陵矿区采煤工作面地面塌陷特征及覆岩破坏规律研究[D]. 西安: 西安科技大学, 2010.
16 YU Guiying, FENG Jingchang. The general situation of coal, oil, gassymbiosis and the importance of comprehensive exploration in Huangling mining area[J]. Coal Geology & Exploration, 1993, 5(3): 7-11.
俞桂英, 冯景昌. 黄陵矿区煤、油、气共生概况及综合勘探的重要性[J]. 中国煤田地质, 1993, 5(3): 7-11.
17 CHEN Dongdong. Prediction technology of surrounding rock gas zones by multiply factor coupling in coal mines with coal-oil-gas coexistence[J]. Coal Geology & Exploration, 2018, 46(2): 49-53.
陈冬冬. 煤油气共生共生矿井围岩气多因素耦合区域预测技术——以鄂尔多斯盆地黄陵矿区为例[J]. 煤田地质与勘探, 2018, 46(2): 49-53.
18 YU Kun, QU Zhenghui, XUE Zhiwen, et al. Burial and thermal history of coal-bearing strata in Shengli coalfield, Erlian Basin[J]. Acta Sedimentologica Sinica, 2018, 36(5): 903-913.
余坤, 屈争辉, 薛志文, 等. 二连盆地胜利煤田含煤地层埋藏史及热史分析[J]. 沉积学报, 2018, 36(5): 903-913.
19 GUO Xiaowen, HE Sheng. Source rock thermal and maturity history modeling in the Baiyun sag of the Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2007, 29(4): 420-425.
郭小文, 何生. 珠江口盆地白云凹陷烃源岩热史及成熟史模拟[J]. 石油实验地质, 2007, 29(4): 420-425.
20 REN Zhanli, TIAN Tao, LI Jinbu, et al. Review on methods of thermal evolution history in sedimentary basins and thermal evolution history reconstruction of superimposed basins[J]. Journal of Earth Sciences and Environment, 2014, 36(3): 1-21.
任战利, 田涛, 李进步, 等. 沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J]. 地球科学与环境学报, 2014, 36(3): 1-21.
21 GUO Zeqing, ZHONG Jianhua, LIU Weihong, et al. Simulation of geological evolution history application of EASY% RO method to simulating maturation history of source rocks in the western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 154-160.
郭泽清, 钟建华, 刘卫红, 等. 应用EASY% RO法模拟柴达木盆地西部烃源岩成熟史[J]. 沉积学报, 2004, 22(1): 154-160.
22 CHEN Ruiyin, LUO Xiaorong, CHEN Zhankun, et al. Estimation of denudation thickness of Mesozoic stata in the ordos basin and its geological significance[J]. Acta Geologica Sinica, 2006, 80(5): 685-693.
陈瑞银, 罗晓容, 陈占坤, 等. 鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J]. 地质学报, 2006, 80(5): 685-693.
23 YANG Chao, HE Yonghong, LEI Yuhong, et al. Compaction coefficient and paleo-pressure characteristics of Yanchang Formation of Triassic in southern Ordos Basin[J]. Journal of Xi'an University of Science and Technology, 2019, 39(6): 992-998.
杨超, 贺永红, 雷裕红, 等. 鄂尔多斯盆地南部三叠系延长组泥岩压实系数与古压力特征[J]. 西安科技大学学报, 2019, 39(6): 992-998.
24 JIA Jingkun, YIN Wei, QIU Nansheng, et al. Petroleum carrier systems and migration and accumulation patterns in Chang 8 member of Yanchang Formation in Honghe oilfield[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2): 9-15.
贾京坤, 尹伟, 邱楠生, 等. 红河油田延长组长8段油气输导体系及运聚模式[J]. 油气地质与采收率, 2016, 23(2): 9-15.
25 REN Zhanli, CUI Junping, LI Jinbu, et al. Tectonic-thermal history reconstruction of ordovician in the Weibei uplift of ordos basin[J]. Acta Geologica Sinica, 2014, 88(11): 2 044-2 056.
任战利, 崔军平, 李进步, 等. 鄂尔多斯盆地渭北隆起奥陶系构造—热演化史恢复[J]. 地质学报, 2014, 88(11): 2 044-2 056.
26 LUO Jinglan, ZHANG Chengli, YAN Shike, et al. Effect of burial history on physical property of sandstone reservoirs: take Yanchang oil region in north Shaanxi as an example[J]. Oil & Gas Geology, 2001, 22(2): 123-127.
罗静兰, 张成立, 阎世可, 等. 盆地埋藏史及其对砂岩储层物性演化的影响——以陕北延长油区砂岩储层为例[J]. 石油与天然气地质, 2001, 22(2): 123-127.
27 LIU Chao, WANG Zhenliang, LIU Chiyang, et al. Characteristics of fluid inclusions in Yanchang Formation of the Yanchang Oilfield, Ordos Basin[J]. Acta Geoscientica Sinica, 2009, 30(2): 215-220.
刘超, 王震亮, 刘池洋, 等. 鄂尔多斯盆地延长矿区延长组流体包裹体特征[J]. 地球学报, 2009, 30(2): 215-220.
28 LIANG Yu, REN Zhanli, WANG Yanlong, et al. Characteristics of fluid inclusions and reservoiring phases in the Yanchang Formation of Zichang area, the Ordos Basin[J]. Oil & Gas Geology, 2011, 32(2): 182-191.
梁宇, 任战利, 王彦龙, 等. 鄂尔多斯盆地子长地区延长组流体包裹体特征与油气成藏期次[J]. 石油与天然气地质, 2011, 32(2): 182-191.
29 ZUO Y H, WANG C C, TANG S L, et al. Mesozoic and Cenozoic thermal history and source rock thermal evolution of the Baiyinchagan sag, Erlian Basin, Northern China[J]. Journal of Petroleum Science and Engineering, 2006, 139: 1-14.
30 ZOU Leiluo. The hydrocarbon generating history of coal-bearing strata and its petroleum geological significance in Dagang fields[J]. Journal of Chongqing University of Science and Technology, 2016, 18(1): 1-3.
邹磊落. 大港探区煤系地层生烃史类型及油气地质意义[J]. 重庆科技学院学报:自然科学版, 2016, 18(1): 1-3.
31 SCOTT A R, KAISER W R, AYERS W B. Thermogenic and secondary biogenic gases, San Juan basin, Colorado and new Mexico-implications for coalbed gas producibility[J]. AAPG Bulletin, 1994, 78: 1 186-1 209.
32 KOTARBA M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins, Poland[J]. Organic Geochemistry, 2001, 32(1): 163-180.
[1] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[2] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[3] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[4] 吉利明,李林涛,吴涛,张晓宝,周世新. 柴达木盆地始新统沟鞭藻及其油源意义[J]. 地球科学进展, 2007, 22(3): 221-226.
[5] 陈启林;周洪瑞;李相博;. 蒙甘青地区早白垩世原型盆地特征及其对烃源岩分布的控制[J]. 地球科学进展, 2005, 20(6): 656-663.
[6] 陈中红;查明. 烃源岩排烃作用研究现状及展望[J]. 地球科学进展, 2005, 20(4): 459-466.
[7] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[8] 郑军卫;刘文汇;史斗. 塔里木盆地深层气勘探潜势[J]. 地球科学进展, 2004, 19(5): 802-807.
[9] 涂建琪,金奎励. 表征海相烃源岩有机质成熟度的若干重要指标的对比与研究[J]. 地球科学进展, 1999, 14(1): 18-23.
[10] 刘大锰. 有机岩石学的研究现状与进展[J]. 地球科学进展, 1994, 9(3): 18-23.
[11] 肖贤明. 有机岩石学及其在油气评价中的应用[J]. 地球科学进展, 1992, 7(2): 39-.
[12] 关德师,王岑红,洪峰,边玉平. 我国油气形成模拟实验概述[J]. 地球科学进展, 1990, 5(4): 19-22.
阅读次数
全文


摘要