1 |
KROUSE H R, VIAU C A, ELIUK L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6 172): 415.
|
2 |
SURDAM R C, JIAO ZHANSHI, MACGOWAN D B. Redox reactions involving hydrocarbons and mineral oxidants: a mechanism for significant porosity enhancement in sandstones[J]. AAPG Bulletin, 1993, 77(9): 1 509-1 518.
|
3 |
WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/4): 157-171.
|
4 |
SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6 964): 327.
|
5 |
GALIMOV E M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37(10): 1 200-1 262.
|
6 |
PAN Changchun, YU Linping, LIU Jinzhong, et al. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation[J]. Earth and Planetary Science Letters, 2006, 246(1/2): 70-89.
|
7 |
HU Wenxuan, KANG Xun, CAO Jian, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin[J]. Nature Communications, 2018, 9(5 131): 3-8.
|
8 |
KIYOSU Y, IMAIZUMI S. Carbon and hydrogen isotope fractionation during oxidation of methane by metal oxides at temperatures from 400 to 530 ℃[J]. Chemical Geology, 1996, 133(1/4): 279-287.
|
9 |
STOBBE E R, DE BOER B A, GEUS J W. The reduction and oxidation behaviour of manganese oxides[J]. Catalysis Today, 1999, 47(1/4): 161-167.
|
10 |
SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1 641-1 664.
|
11 |
TANG Yong, XU Yang, LI Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 16-21.
|
|
唐勇, 徐洋, 李亚哲,等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J]. 新疆石油地质, 2018, 39(1): 16-21.
|
12 |
KANG Xun, HU Wenxuan, CAO Jian, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: a case of Baikouquan Formation in Aihu oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1 383.
|
|
康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系——以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报, 2016, 37(11): 1 383.
|
13 |
TANG Yong, XU Yang, QU Jianhua, et al. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 629-633.
|
|
唐勇, 徐洋, 瞿建华,等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质, 2014, 35(6): 629-633.
|
14 |
CARROLL A R, GRAHAM S A, HENDRIX M S, et al. Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins[J]. GSA Bulletin, 1995, 107(5): 571-594.
|
15 |
CAI Zhongxian, CHEN Fajing, JIA Zhenyuan. Types and tectonic evolut ion of Junger Basin[J]. Earth Science Frontiers, 2000, 7(4): 431-440.
|
|
蔡忠贤, 陈发景, 贾振远. 准噶尔盆地的类型和构造演化[J]. 地学前沿, 2000, 7(4): 431-440.
|
16 |
TANG Yong, GUO Wenjian, WANG Xiatian, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications[J]. Xinjiang Petroleum Geology, 2019, 40(2): 127-135.
|
|
唐勇, 郭文建, 王霞田,等. 玛湖凹陷砾岩大油区勘探新突破及启示[J]. 新疆石油地质, 2019, 40(2): 127-135.
|
17 |
JIA Haibo, JI Hancheng, LI Xinwei, et al. A retreating fan-delta system in the Northwestern Junggar Basin, northwestern China—characteristics, evolution and controlling factors[J]. Journal of Asian Earth Sciences, 2016, 123: 162-177.
|
18 |
HAYNES W M. CRC handbook of chemistry and physics[M]. Florida: CRC Press, 2014: 12 100-12 236.
|
19 |
ALVAREZ M, RUEDA E H, SILEO E E. Simultaneous incorporation of Mn and Al in the goethite structure[J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1 009-1 020.
|
20 |
LIU Huan, LU Xiancai, LI Juan, et al. Geochemical fates and unusual distribution of arsenic in natural ferromanganese duricrust[J]. Applied Geochemistry, 2017, 76: 74-87.
|
21 |
ARTAMONOVA I V, GORICHEV I G, GODUNOV E B. Kinetics of manganese oxides dissolution in sulphuric acid solutions containing oxalic acid[J]. Engineering, 2013, 5(9): 714.
|
22 |
WALANDA D K, LAWRANCE G A, DONNE S W. Hydrothermal MnO2: synthesis, structure, morphology and discharge performance[J]. Journal of Power Sources, 2005, 139(1/2): 325-341.
|
23 |
HEIN J R, KOSKI R A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges[J]. Geology, 1987, 15(8): 722-726.
|
24 |
BEAL E J, HOUSE C H, ORPHAN V J. Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5 937): 184-187.
|
25 |
SIVAN O, ANTLER G, TURCHYN A V, et al. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences, 2014, 111(40): E4139-E4147.
|
26 |
CHEN Qilin, HUANG Chenggang. Research progress of modification of reservoirs by dissolution in sedimentary rock[J]. Advances in Earth Science, 2018, 33(11): 1 112-1 129.
|
|
陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展[J]. 地球科学进展, 2018, 33(11): 1 112-1 129.
|
27 |
DU Jiangmin, LONG Pengyu, YANG Peng, et al. Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China[J]. Advances in Earth Science, 2020, 35(1): 52-69.
|
|
杜江民, 龙鹏宇, 杨鹏, 等. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
|