地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 1004 -1014. doi: 10.11867/j.issn.1001-8166.2021.019

沉积改造进展 上一篇    下一篇

准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究
康逊 1 , 2( ), 胡瑞璞 1, 胡文瑄 2, 谭静强 1   
  1. 1.中南大学地球科学与信息物理学院,湖南 长沙 410012
    2.南京大学地球科学与 工程学院,江苏 南京 210023
  • 收稿日期:2020-10-16 修回日期:2021-03-29 出版日期:2021-10-10
  • 基金资助:
    国家自然科学基金青年科学基金项目“准噶尔盆地玛湖凹陷下三叠统碎屑岩烃类热氧化差异性分析与机理研究”(41902137);湖南省自然科学基金青年项目“深埋碎屑岩储集层烃类热氧化顺序与机理研究”(2020JJ5703)

Oxidizing Materials Involving in Thermochemical Oxidation of Hydrocarbons in the Lower Triassic Baikouquan Formation, Junggar Basin

Xun KANG 1 , 2( ), Ruipu HU 1, Wenxuan HU 2, Jingqiang TAN 1   

  1. 1.School of Geosciences and Info-physics,Central South University,Changsha 410012,China
    2.School of Earth Sciences and Engineering,Nanjing University,Nanjing 210023,China
  • Received:2020-10-16 Revised:2021-03-29 Online:2021-10-10 Published:2021-11-19
  • About author:KANG Xun (1989-), male, Zhoukou City, Henan Province, Lecturer. Research areas include evolution of oil and gas in reservoir rocks and deep burial reservoir beds. E-mail: xunkang@csu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China Youth Project "Differences and mechanism of thermochemical oxidation of hydrocarbons in the Lower Triassic clastic reservoir of the Mahu Sag, Junggar Basin"(41902137);The Hunan Natural Science Foundation Youth Project "Reaction sequence and mechanism of thermochemical oxidation of hydrocarbons in deep buried clastic reservoir"(2020JJ5703)

沉积盆地碎屑岩储层烃类热氧化的机理尚不明确,特别是参与反应的氧化性物质有待厘清。就此,在已证实发生该反应的准噶尔盆地下三叠统百口泉组开展了针对性研究。在岩心描述基础上,进行了系统的岩矿鉴定、全岩和微区主量元素以及铁价态分析。结果表明,百口泉组岩心呈现出褐色与灰色—灰绿色层段的不规则分布,颜色变化不受岩性界面和沉积构造的限制,显示出灰色—灰绿色层段为埋藏期还原性含油气流体改造的产物。褐色向灰色—灰绿色的转变是岩石中赤铁矿被消耗并伴随绿泥石生成的结果。赤铁矿含大量Fe3+和少量Mn3+/4+,二者均参与了烃类热氧化反应,其含量差异导致伴生的绿泥石富Fe少Mn。赤铁矿大量参与反应,指示烃类热氧化可能在陆相含油气盆地深层普遍发生,有必要进一步开展研究。

Mechanism of Thermochemical Oxidation of Hydrocarbons (TOH) in the clastic strata of sedimentary basins is unclear.In particular, it is urgently needed to clarify the oxidizing substances involved in the reaction and their state of occurrence before and after the reaction. A related study was carried out in the Lower Triassic Baikouquan (T1b) Formation in Junggar Basin, where the TOH reaction has been confirmed in recent years. Based on detailed core logging, systematic petrological and mineral identification, major elements ofbulk rock and in situ area, and chemical valence analysis of iron ions were carried out. The results show that the cores of this formation show obviously irregular distribution of brown and gray-grayish green layers, and the color changesare not limited in lithologic interface and sedimentary structure. Gray-grayish green layers are most likely the products of bleaching of reducible oil-gas bearing fluid during burial diagenesis. Mineral changes indicate that the color transformation from brown to gray-grayish green is the result of the consumption of oxidizing hematite and the generation of chlorite in the rock. Hematite contains a large amount of Fe3+ and a small amount of Mn3+/4+ ions replacing Fe3+ by isomorphism.In the T1b formation both Fe3+ and Mn3+/4+ in hematite provide effective electron acceptor for the TOH reaction. Mn3+/4+ is preferentially involved in reactions, however,the high content of Fe3+ was the main electron acceptor, followed by low content of Mn3+/4+. The content difference of Fe3+ and Mn3+/4+ causes the fact that the reduction product of authigenic chlorite is rich in Fe, whereas Mn is mainly enriched in low content authigenic calcite cements with extremely negative δ13C values. Abundant hematite participated in the reaction, indicating that the TOH reaction may occur generally in the deep layers of continental petroliferous basins. This reaction will causealterations in mineral composition, remoldingreservoir rocks, and meanwhile consuming large amounts of hydrocarbons in the crust. It is necessary to carry out further studies on this process, particularly in sedimentary basins and subduction zone.

中图分类号: 

图1 研究区位置与百口泉组岩性柱状图(修改自参考文献[ 12 ])
Fig. 1 Position of the study area and lithologic column of Baikouquan Formation modified after reference 12 ])
图2 百口泉组岩心照片及单偏光镜下照片
(a)岩心褐色、灰色—灰绿色对比明显,砾岩、砂岩—粉砂岩夹部分泥岩,M056井,3 333.39~3 336.65 m;(b)颜色差异显著的砂砾岩,M056井,3 338.40~3 341.62 m;(c)灰色砂质细砾岩,M056井,3 315.6 m;(d)灰色砂质中细砾岩,M056井,3 333.9 m;(e)灰色砂质细砾岩,M056井,3 336.5 m;(f)褐色含细砾泥岩,M056井,3 336.8 m
Fig. 2 Core pictures of the Baikouquan Formation and its micrographs under plane-polarized light
(a) Brown, gray and grayish green cores coexist in Well M056, 3 333.39~3 336.65 m; (b) Color varies significantly at 3 338.40~3 341.62 m of Well M056; (c) Gray sandy gravel conglomerate, Well M056, 3 315.6 m;(d) Gray sandy conglomerate, Well M056, 3 333.9 m; (e) Gray sandy gravel conglomerate, Well M056, 3 336.5 m; (f) Brown mudstone containing gravels, Well M056, 3 336.8 m
图3 百口泉组岩样显微荧光照片
(a)褐色砂质细砾岩,几乎无烃类显示,M056井,3 339.4 m;(b)褐色砂质细砾岩,几乎无烃类显示,M056井,3 335.6 m;(c)灰绿色砂质细砾岩,黄色指示黏土杂基和长石溶蚀孔处被烃类混染,M056井,3 317.2 m;(d)灰色砂质细砾岩,绿色指示黏土杂基和长石溶孔中有烃类分布,M056井,3 314.1 m
Fig. 3 Micro fluorescence pictures of rock samples from the Baikouquan Formation
(a) Almost no hydrocarbon shows in brown sandy conglomerate, Well M056, 3 339.4 m; (b) Almost no hydrocarbon shows in brown sandy conglomerate, Well M056, 3 335.6 m; (c) Yellow fluorescence indicating hydrocarbon in gray-green sandy conglomerate, Well M056, 3 317.2 m; (d) Green fluorescence indicating hydrocarbon in gray sandy conglomerate, Well M056, 3 314.1 m
表1 百口泉组各岩性全岩 XRF主量元素数据表
Table 1 XRF major elements for each rock type of Baikouquan Formation
样品编号 岩性 SiO2/% TiO2/% Al2O3/% Fe2O3T/% Mn2O3T/% MgO/% CaO/% Na2O/% K2O/% P2O5/% LOI/% 总和/%
AH4-6 红褐色中砾岩 67.19 0.68 14.48 8.07 0.08 0.79 0.79 1.63 3.18 0.08 3.38 100.35
AH4-8-2 红褐色砂质中砾岩 69.41 0.62 13.63 6.56 0.08 0.79 0.78 1.88 3.20 0.07 2.98 100.00
M18-26 红褐色泥岩 62.47 0.88 17.55 7.57 0.13 1.49 0.98 1.13 3.63 0.12 4.05 100.00
MX1-1 红褐色粉砂岩 63.47 0.81 16.89 6.88 0.15 1.45 0.78 2.41 3.43 0.07 3.38 99.72
X1-15 褐色中砾岩 69.07 0.48 12.81 8.69 0.30 0.97 0.74 1.95 2.47 0.07 2.94 100.49
AH4-7-2 灰色砂质中砾岩 70.01 0.48 14.22 5.26 0.19 0.97 0.83 2.25 2.82 0.14 3.08 100.25
M606-1 深灰色泥质粉砂岩 64.85 0.72 15.64 6.60 0.28 1.61 0.82 1.82 3.65 0.06 4.19 100.25
M18-12 灰绿色泥质粉砂岩 61.14 0.85 19.81 5.24 0.14 1.51 0.88 1.18 5.04 0.02 4.15 99.97
M18-24 灰绿色泥岩 62.40 0.94 19.34 4.15 0.12 1.33 1.14 1.51 4.12 0.12 4.3 99.48
AH4-1-2 灰绿色中细砂岩 72.44 0.42 12.31 5.51 0.15 0.92 0.68 2.38 2.8 0.11 2.34 100.06
AH4-5-2 灰绿色含砾细砂岩 72.43 0.56 13.01 4.60 0.13 0.74 0.68 2.35 3.00 0.10 2.37 99.97
MX1-2 灰绿色细砂岩 67.25 0.84 15.66 6.17 0.24 1.59 0.57 2.62 2.95 0.05 1.79 99.73
AH1-4-2 灰绿色含泥细砂岩 77.60 0.37 11.13 2.88 0.13 0.9 0.58 2.85 1.68 0.08 2.56 100.76
M18-5 深灰色含砾粗砂岩 59.74 0.62 21.12 5.56 0.17 1.33 0.66 1.66 5.33 0.01 3.47 99.67
AH1-17 灰色含细砾粉砂岩 77.62 0.53 11.00 3.53 0.13 0.54 0.76 1.93 1.89 0.01 2.56 100.50
MX1-4 灰白色含砾细砂岩 71.99 0.57 13.20 4.71 0.18 1.03 0.77 2.67 1.94 0.12 2.58 99.76
X1-10 灰绿色中砾岩 72.24 0.48 13.21 4.98 0.21 0.89 0.71 2.54 2.31 0.08 2.58 100.23
M-6 灰绿色中砾岩 58.04 0.51 16.43 12.71 0.53 1.97 0.74 2.46 2.44 0.12 4.75 100.70
图4 褐色岩样铁、锰元素赋存状态
(a)褐色泥岩,SEM图较亮部位为赤铁矿集合体,EDS能谱图紫色指示Fe元素,红色指示Mn元素,艾湖2井,3 311.9 m;(b)褐色中砾岩,SEM图较亮区为赤铁矿和黏土矿物混合物,EDS能谱图黄色指示Fe元素,红色指示Mn元素,玛西1井,3 588.7 m;(c)褐色泥岩,SEM图较亮区域为赤铁矿集合体,黏土杂基中弥散部分赤铁矿,EDS数据表明,孤立分布的赤铁矿有较高Fe和Mn含量,而黏土杂基中Fe和Mn含量较低,玛18井,3 925.65 m,bdl指低于检测限
Fig. 4 Occurrence of Fe and Mn in brown rock samples
(a) Brown mudstone, the bright in SEM picture is hematite aggregate, in EDS picture purple indicates Fe, red indicates Mn Well Aihu 2, 3 311.9 m; (b) Brown pebble conglomerate, in this EDS picture yellow indicates Fe, red indicates Mn, Well Maxi 1, 3 588.7 m;(c) Brown mudstone, the bright in SEM picture is isolated hematite aggregates with high Fe and Mn content, whose contents can be seen in right table, Well Ma 18, 3 925.65 m, "bdl" is below the detection limit
图5 褐色泥岩铁元素XPS谱图(玛西1井,3 588.7 m
Fig. 5 XPS spectrum of Fe in brown mudstone Well Maxi 1 3 588.7 m
图6 灰绿色砂质细砾岩绿泥石赋存状态
(a)粒间杂基含绿泥石,并与黑色沥青共生,玛2井,3 389.22 m,单偏光;(b)绿泥石与方解石共生,方解石有2个期次,艾湖1井,3 815.40 m,BSE;(c)SEM图可见片状绿泥石,周缘分布高岭石,EDS能谱显示绿泥石富Fe少Mn,玛18井,3 904.9 m;(d)叶片状绿泥石中Fe较富集,玛18井,3 904.9 m
Fig. 6 Occurrence state of chlorite in grayish-green sandy gravel conglomerate
(a) Chlorite is distributed in matrix, and black asphalt is also found, at 3 389.22 m of Well Ma 2, plane-polarized light; (b) Chlorite and calcite coexist in 3 815.40 m of Well Aihu 1, BSE; (c) Flake chlorite and kaolinite are distributed together, EDS spectrum show chlorite contains Fe and a small amount of Mn, 3 904.9 m of Well Ma 18; (d) Chlorite, kaolinite and authigenic quartz occur together, EDS spectrum shows that Fe is enriched in chlorite, 3 904.9 m of Well Ma 18
表2 百口泉组黏土矿物 EPMA主量元素数据表
Table 2 EPMA major elements of clay minerals in the Baikouquan Formation
图7 褐色和灰绿色岩样X射线衍射谱图
(a)褐色含细砾泥岩,可见赤铁矿峰,玛056井,3 337.6 m;(b)灰色砂质泥质细砾岩,赤铁矿峰基本消失,玛056井,3 315.6 m
Fig. 7 X-ray diffraction spectrum of brown and gray-green rocks
(a) Hematite peak is clear in brown mudstone containing gravels, at 3 337.6 m of Well Ma 056; (b) Hematite peak disappears in gray sandy gravel conglomerate at 3 315.6 m of Well Ma 056
1 KROUSE H R, VIAU C A, ELIUK L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6 172): 415.
2 SURDAM R C, JIAO ZHANSHI, MACGOWAN D B. Redox reactions involving hydrocarbons and mineral oxidants: a mechanism for significant porosity enhancement in sandstones[J]. AAPG Bulletin, 1993, 77(9): 1 509-1 518.
3 WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/4): 157-171.
4 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6 964): 327.
5 GALIMOV E M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37(10): 1 200-1 262.
6 PAN Changchun, YU Linping, LIU Jinzhong, et al. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation[J]. Earth and Planetary Science Letters, 2006, 246(1/2): 70-89.
7 HU Wenxuan, KANG Xun, CAO Jian, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin[J]. Nature Communications, 2018, 9(5 131): 3-8.
8 KIYOSU Y, IMAIZUMI S. Carbon and hydrogen isotope fractionation during oxidation of methane by metal oxides at temperatures from 400 to 530 ℃[J]. Chemical Geology, 1996, 133(1/4): 279-287.
9 STOBBE E R, DE BOER B A, GEUS J W. The reduction and oxidation behaviour of manganese oxides[J]. Catalysis Today, 1999, 47(1/4): 161-167.
10 SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1 641-1 664.
11 TANG Yong, XU Yang, LI Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 16-21.
唐勇, 徐洋, 李亚哲,等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J]. 新疆石油地质, 2018, 39(1): 16-21.
12 KANG Xun, HU Wenxuan, CAO Jian, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: a case of Baikouquan Formation in Aihu oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1 383.
康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系——以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报, 2016, 37(11): 1 383.
13 TANG Yong, XU Yang, QU Jianhua, et al. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 629-633.
唐勇, 徐洋, 瞿建华,等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质, 2014, 35(6): 629-633.
14 CARROLL A R, GRAHAM S A, HENDRIX M S, et al. Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins[J]. GSA Bulletin, 1995, 107(5): 571-594.
15 CAI Zhongxian, CHEN Fajing, JIA Zhenyuan. Types and tectonic evolut ion of Junger Basin[J]. Earth Science Frontiers, 2000, 7(4): 431-440.
蔡忠贤, 陈发景, 贾振远. 准噶尔盆地的类型和构造演化[J]. 地学前沿, 2000, 7(4): 431-440.
16 TANG Yong, GUO Wenjian, WANG Xiatian, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications[J]. Xinjiang Petroleum Geology, 2019, 40(2): 127-135.
唐勇, 郭文建, 王霞田,等. 玛湖凹陷砾岩大油区勘探新突破及启示[J]. 新疆石油地质, 2019, 40(2): 127-135.
17 JIA Haibo, JI Hancheng, LI Xinwei, et al. A retreating fan-delta system in the Northwestern Junggar Basin, northwestern China—characteristics, evolution and controlling factors[J]. Journal of Asian Earth Sciences, 2016, 123: 162-177.
18 HAYNES W M. CRC handbook of chemistry and physics[M]. Florida: CRC Press, 2014: 12 100-12 236.
19 ALVAREZ M, RUEDA E H, SILEO E E. Simultaneous incorporation of Mn and Al in the goethite structure[J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1 009-1 020.
20 LIU Huan, LU Xiancai, LI Juan, et al. Geochemical fates and unusual distribution of arsenic in natural ferromanganese duricrust[J]. Applied Geochemistry, 2017, 76: 74-87.
21 ARTAMONOVA I V, GORICHEV I G, GODUNOV E B. Kinetics of manganese oxides dissolution in sulphuric acid solutions containing oxalic acid[J]. Engineering, 2013, 5(9): 714.
22 WALANDA D K, LAWRANCE G A, DONNE S W. Hydrothermal MnO2: synthesis, structure, morphology and discharge performance[J]. Journal of Power Sources, 2005, 139(1/2): 325-341.
23 HEIN J R, KOSKI R A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges[J]. Geology, 1987, 15(8): 722-726.
24 BEAL E J, HOUSE C H, ORPHAN V J. Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5 937): 184-187.
25 SIVAN O, ANTLER G, TURCHYN A V, et al. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences, 2014, 111(40): E4139-E4147.
26 CHEN Qilin, HUANG Chenggang. Research progress of modification of reservoirs by dissolution in sedimentary rock[J]. Advances in Earth Science, 2018, 33(11): 1 112-1 129.
陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展[J]. 地球科学进展, 2018, 33(11): 1 112-1 129.
27 DU Jiangmin, LONG Pengyu, YANG Peng, et al. Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China[J]. Advances in Earth Science, 2020, 35(1): 52-69.
杜江民, 龙鹏宇, 杨鹏, 等. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[1] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
阅读次数
全文


摘要