Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (2): 199-208    DOI: 10.11867/j.issn.1001-8166.2017.02.0199
研究简报     
铀在海相烃源岩中富集的条件及主控因素
蔡郁文1, 2, 3, 王华建2, 3, 王晓梅2, 3, 何坤2, 3, 张水昌2, 3, 吴朝东1
1.北京大学地球科学与空间科学学院,北京 100871;
2.中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083;
3.中国石油勘探开发研究院,北京 100083
Formation Conditions and Main Controlling Factors of Uranium in Marine Source Rocks
Cai Yuwen1, 2, 3, Wang Huajian2, 3, Wang Xiaomei2, 3, He Kun2, 3, Zhang Shuichang2, 3, Wu Chaodong1
1.School of Earth and Space Sciences, Peking University,Beijing 100083,China;
2.Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation,Beijing 100083,China;
3.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
 全文: PDF(3091 KB)   HTML
摘要:

国内外沉积盆地中铀的富集不同程度地伴随烃源岩的形成。铀作为一种兼具催化、氧化和放射性的特殊元素, 其对有机矿产的形成及演化可能具有重要的促进作用,通过调查并统计国内外烃源岩中铀含量,在分析铀与各类矿物、有机质及微生物等相互作用的基础上, 讨论了铀在海相烃源岩中的富集条件及主控因素, 提出古大气和古海洋的氧化程度是烃源岩中铀富集的主要控制因素, 陆地含氧风化和海底热液可能是海相沉积铀的2个主要来源,含铁矿物组成、有机质、磷酸盐矿物、黏土矿物及一些微生物等均可导致铀价态转化, 并作为载体, 通过吸附或络合作用使铀在沉积物中富集。因此, 铀富集可能是烃源岩形成的一个伴随结果。

关键词: 古海洋烃源岩有机质    
Abstract:

The research of petroleum exploration demonstrates that source rocks, developed in petroleum-bearing sedimentary basins worldwide, are accompanied by uranium to different degrees.As a special element with catalytic, oxidative and radioactive features, uranium may play important roles in the source rock formation and hydrocarbon generation. In this paper, we systematically discussed the formation conditions and main controlling factors of uranium in marine source rocks based on the comprehensive analysis of uranium contents in the worldwide source rocks and the interactions of uranium with minerals, organic materials and microbes. The results indicated that oxidative degrees of ancient atmosphere and palaeo-ocean were governing factors of uranium enrichment in source rocks. Oxidative weathering and hydrothermal solution might be the two main sources of marine sedimentary uranium. In addition, iron-bearing minerals, phosphate minerals, clay minerals, organic materials, and microbes were of great significance in promoting the transformation of the uranium valence states. They could also act as carriers to absorb or combine uranium, resulting in the enrichment of uranium in sediments. Therefore, the enrichment of uranium might be an inevitable result of source rocks formation.

Key words: Source rocks    Organic materials    Palaeo-ocean.    Iron    Uranium
收稿日期: 2016-10-20 出版日期: 2017-02-20
ZTFLH:  P619.14  
基金资助:

国家自然科学基金重点项目“中国元古代海相烃源岩形成的生物、海洋和地质因素及耦合关系研究”(编号:41530317); 国家自然科学基金青年科学基金项目“铀的放射性作用对有机质成熟和生烃的影响”(编号:41602144)资助

作者简介: 蔡郁文(1989-), 女, 黑龙江大庆人, 博士研究生,主要从事油气地球化学研究.E-mail:caiyuwen1@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴朝东
蔡郁文
王晓梅
何坤
张水昌
王华建

引用本文:

蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.

Cai Yuwen, Wang Huajian, Wang Xiaomei, He Kun, Zhang Shuichang, Wu Chaodong. Formation Conditions and Main Controlling Factors of Uranium in Marine Source Rocks. Advances in Earth Science, 2017, 32(2): 199-208.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.02.0199        http://www.adearth.ac.cn/CN/Y2017/V32/I2/199

[1] Fu Jin, Zhao Ningbo, Pei Chengkai,et al. Indicator chiaracteristics of elementary geochiemistry and anomaly model for Chinese carbonaceous-siliceous-argillaceous rock type uranium deposit[J]. Uranium Geology, 2014, 30(5): 298-304.
[付锦, 赵宁博, 裴承凯,等.中国碳硅泥岩型铀矿地球化学指示元素特征及异常模式[J]. 铀矿地质, 2014, 30(5): 298-304.]
[2] Zhong Fujun, Pan Jiayong, Wang Kaixing,et al. The prediction model of Chinese carbonaceous-siliceous-argillaceous rock type uranium deposit[J]. Acta Mineralogica Sinica, 2015,(Suppl.1):372-373.
[钟福军, 潘家永, 王凯兴,等.我国碳硅泥岩型铀矿床找矿预测模型[J]. 矿物学报, 2015,(增刊1):372-373.]
[3] Huang Jingbai, Huang Shijie. Regional metallogenic characteristics of China’s uranium resources[J].Uranium Geology, 2005, 21(3): 129-138.
[黄净白, 黄世杰. 中国铀资源区域成矿特征[J]. 铀矿地质, 2005, 21(3): 129-138.]
[4] Doveton J H, Merriam D F. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface[J].Chemical Geology, 2004, 206(3/4): 249-258.
[5] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J].Chemical Geology, 2009, 260(1/2): 1-19.
[6] Liu An, Li Xubing, Wang Chuanshang, et al. Analysis of geochemical feature and sediment environment forhydrocarbon source rocks of cambrian in west Hunan-Hubei area[J]. Acta Sedimentologica Sinica, 2013, 31(6):1 122-1 132.
[刘安, 李旭兵, 王传尚, 等. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J].沉积学报, 2013, 31(6):1 122-1 132.]
[7] Zhang Benhao. The Geochemistry Characteristics and the Occurrence Reason of the U-rich Source Rocks in Chang 7 Memeber of Yanchang Formation, Ordos Basin[D]. Xi’an: Northwest University, 2011.
[张本浩. 鄂尔多斯盆地延长组长7烃源岩铀富集的地质地球化学特征及其成因探讨[D]. 西安:西北大学, 2011.]
[8] Zhang Yige. Well Logging Evaluation and Identification of Shale Gas in Changning, Sichuan[D]. Chengdu: Southwest Petroleum University, 2014.
[张译戈. 长宁地区页岩气测井精细解释方法研究[D]. 成都:西南石油大学, 2014.]
[9] Liu Chiyang, Mao Guangzhou, Qiu Xinwei,et al. Organic-inorganic energy minerals interactions and the accumulation and mineralization in the same sedimentary basins[J].Chinese Journal of Nature, 2013, 35(1): 47-55.
[刘池阳,毛光周,邱欣卫, 等. 有机—无机能源矿产相互作用及其共存成藏(矿)[J]. 自然杂志, 2013, 35(1): 47-55.]
[10] Mao Guangzhou. Effects of Uranium on the Hydrocarbon Generaton of Hydrocarbon Source Rocks[D]. Xi’an: Northwest University, 2009.
[毛光周. 铀对烃源岩生烃演化的影响[D]. 西安:西北大学, 2009.]
[11] Xu Guocang, Zhang Dehua, Zhang Hongjian. The feasibility and prospect of joint exploration and development for uranium and gas in black rock series[J].Uranium Geology,2015,31(1): 36-43.
[徐国苍, 张德华, 张红建. 黑色岩系铀气共探可行性及勘探开发前景[J]. 铀矿地质, 2015, 31(1): 36-43.]
[12] Cai Yuqi, Zhang Jindai, Li Ziying,et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica,2015,89(6): 1 051-1 069.
[蔡煜琦,张金带,李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1 051-1 069.]
[13] Partin C, Bekker A, Planansky N,et al. Large-scale fluctuations in precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369/370: 284-293,doi:10.1016/j.epsl.2013.03.031.
[14] Kalin M, Wheeler W, Mernrath G. The removal of uranium from mining waste water using algal/microbial biomass[J].Journal of Environmental Radioactivity, 2004, 78(2): 151-177.
[15] Tribovillard N, Algeo T J, Lyons T,et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1): 12-32.
[16] Dunk R, Mills R, Jenkins W. A reevaluation of the oceanic uranium budget for the Holocene[J].Chemical Geology, 2002, 190(1): 45-67.
[17] Sahoo S K, Plankansky N J, Kendall B,et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7 417): 546-549.
[18] Carbral A R, Creaser R A, Nägler T,et al. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil[J]. Chemical Geology, 2013, 362: 91-104,doi:10.1016/j.chemgeo.2013.08.041.
[19] Guo Qingjun, Shields G A, Liu Congqiang,et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1): 194-216.
[20] Pi Daohui, Liu Congqiang, Shields-Zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metals[J].Preca Mbrian Research, 2013, 225(1): 218-229.
[21] Leventhal J. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991, 26(2): 104-112.
[22] Yu Bingsong, Dong Hailiang, Widom E,et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
[23] Craig J, Biffi U, Galimberti R F,et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40(1): 1-47.
[24] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J].Chemical Geology, 2012, 324/325:6-18,doi:10.1016/j.chemgeo.2011.09.002.
[25] Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J].Chemical Geology, 1993, 104(1): 1-37.
[26] Lyons T W, Reinhard C T, Plankansky N J. The rise of oxygen in Earth’s early ocean and atmosphere[J].Nature, 2014, 506(7 488): 307-315.
[27] Plankansky N J, Asasel D, Hoffmann A,et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4): 283-286.
[28] Candield D E. The early history of atmospheric oxygen: Homage to Robert M. Garrels[J].Annual Review of Earth and Planetary Sciences, 2005, 33(1): 1-36.
[29] Holland H D. The oxygenation of the atmosphere and oceans[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470): 903-915.
[30] Plankansky N J, Reinhard C T, Wang X,et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6 209): 635-638.
[31] Jiao Nianzhi, Li Chao, Wang Xiaoxue, et al. Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7):668-681.
[焦念志, 李超, 王晓雪,等.海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展,2016, 31(7): 668-681.]
[32] Zhang Shuichang, Wang Xiaomei, Wang Huajian,et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113(7):1 731-1 736.
[33] Grosjean E, Love G, Stalvies C,et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman salt basin[J]. Organic Geochemistry, 2009, 40(1): 87-110.
[34] Veevers J. Gondwanaland from 650-500 Ma assembly through 320Ma merger in Pangea to 185-100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating[J].Earth-Science Reviews, 2004, 68(1): 1-132.
[35] Large R R, Halpin J A, Lounejeva E,et al. Cycles of nutrient trace elements in the Phanerozoic ocean[J]. Gondwana Research, 2015, 28(4): 1 282-1 293.
[36] Sleep N H. Hotspots and mantle plumes: Some phenomenology[J].Journal of Geophysical Research: Solid Earth, 1990, 95(B5): 6 715-6 736.
[37] Li Yanfang, Lü Haigang, Zhang Yu, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 36(2): 109-116.
[李艳芳, 吕海刚, 张瑜,等.四川盆地五峰组—龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学, 2015, 36(2): 109-116.]
[38] Yang H, Zhang W, Wu K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293.
[39] Karhu J A, Holland H D. Carbon isotopes and rise of atmospheric oxygen[J]. Geology, 1996, 24(10):867-870.
[40] Scott T, Allen G, Heard P,et al. Reduction of U(VI) to U(IV) on the surface of magnetite[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5 639-5 646.
[41] Massey M S, Lezama-Pacheco J S, Jones M E,et al. Competing retention pathways of uranium upon reaction with Fe(II)[J]. Geochimica et Cosmochimica Acta, 2014, 142(1): 166-185.
[42] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology, 2004, 206(3): 289-318.
[43] Zheng Y, Anderson R F, Van Geen A,et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(17): 3 085-3 092.
[44] Xiang Weidong, Chen Zhaobo, Chen Zuyi,et al. Discussion on relationship between organic matter and metallogenesis of epigenetic sandstone type uranium deposits: Take Shihongtan district in Turpan-Hami Basin as an example[J].Uranium Geology, 2000, 16(2): 65-73.
[向伟东,陈肇博,陈祖伊,等. 试论有机质与后生砂岩型铀矿成矿作用——以吐哈盆地十红滩地区为例[J]. 铀矿地质, 2000, 16(2): 65-73.]
[45] Bonnettic C, Cuney M, Malartre F,et al. The Nuheting deposit, Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization[J]. Ore Geology Reviews, 2015, 69: 118-139,doi:10.1016/j.oregeorev.2015.02.010.
[46] Idiz E F, Carlisle D, Kaplan I. Interaction between organic matter and trace metals in a uranium rich bog, Kern County, California, USA[J].Applied Geochemistry, 1986, 1(5): 573-590.
[47] Manning G S. Limiting laws and counterion condensation in polyelectrolyte solutions: IV. The approach to the limit and the extraordinary stability of the charge fraction[J].Biophysical Chemistry, 1977, 7(2): 95-102.
[48] Fisher Q, Wignall P. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata, England[J].Chemical Geology, 2001, 175(3): 605-621.
[49] Havelcov M, Machovi V, Mizera J,et al. A multi-instrumental geochemical study of anomalous uranium enrichment in coal[J]. Journal of Environmental Radioactivity, 2014, 137:52-63,doi:10.1016/j.jevrad.2014.06.015.
[50] Zhang Benhao, Wu Bailin, Liu Chiyang,et al.Occurrence of Uranium in hydrocarbon of Chang 7 Member of Yanchang Formation of Ordos Basin[J].Northwestern Geology, 2011, 44(2): 124-132.
[张本浩,吴柏林,刘池阳,等. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态[J]. 西北地质, 2011, 44(2): 124-132.]
[51] Grenthe I, Wanner H, Forest I. Chemical Thermodynamics of Uranium[M].Amsterdam: North-Holland, 1992.
[52] Kohler M, Curtis G P, Meece D E,et al. Methods for estimating adsorbed Uranium (VI) and distribution coefficients of contaminated sediments[J]. Environmental Science & Technology, 2004, 38(1): 240-247.
[53] Cheng T, Barnett M O, Roden E E,et al. Effects of phosphate on Uranium (VI) adsorption to goethite-coated sand[J]. Environmental Science & Technology, 2004, 38(22): 6 059-6 065.
[54] Huang Jitai. Resarch on the structural characteristics of clay minerals and their applications[J].Chinese Journal of Structural Chemistry, 1996, 15(6): 438-443.
[黄继泰. 黏土矿物的结构特征及其应用研究[J]. 结构化学, 1996, 15(6): 438-443.]
[55] Tsunashima A, Brindley G, Bastovanov M. Adsorption of uranium from solutions by montmorillonite: Compositions and properties of uranyl montmorillonites[J].Clays and Clay Minerals, 1981, 29(1): 10-16.
[56] Joseph C, Stochkmann M, Schmeide K,et al. Sorption of U(VI) onto Opalinus clay: Effects of pH and humic acid[J]. Applied Geochemistry, 2013, 36(3): 104-117.
[57] Reguera G, Mccarthy K D, Mehta T,et al. Extracellular electron transfer via microbial nanowires[J]. Nature,2005, 435(7 045): 1 098-1 101.
[58] Lovley D R, Phillips E J, Gorby Y A, et al. Microbial reduction of uranium[J].Nature, 1991, 350(6 317): 413-416.
[59] Wang Ying, Liu Tongxu, Li Fangbai. Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral Interface [J]. Advances in Earth Science, 2016, 31(4): 347-356.
[王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展 2016, 31(4): 347-356.]
[60] Scholz F, Hensen C, Noffke A, et al. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column[J].Geochimica et Cosmochimica Acta, 2011, 75(22): 7 257-7 276.
[61] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology, 2009, 268(3): 211-225.
[62] Zheng Y, Anderson R F, van Geen A, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10): 1 759-1 772.
[63] Shen Ping, Zhu Huiying, Xu Yongchang. Distribituional features of uranium, thorium and potassium in the sedimentary rocks[J].Acta Sedimentologica Sinica, 1983, 1(3): 109-122.
[沈平, 朱慧应, 徐永昌. 沉积岩中铀、钍、钾与区域地温状态的关系[J]. 沉积学报, 1983, 1(3): 109-122.]

[1] 侯征, 王天意, 于长春, 熊盛青, 邸龙. 基于航磁数据的三维地质建模研究[J]. 地球科学进展, 2018, 33(3): 257-269.
[2] 佟小雪, 王长乐, 彭自栋, 南景博, 黄华, 张连昌. 早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展[J]. 地球科学进展, 2018, 33(2): 152-165.
[3] 罗齐彬, 杨亚新, 张叶, 吴信民, 郑勇明, 赵柏宇. 地气测量在隐伏铀矿找矿中的应用与现状[J]. 地球科学进展, 2018, 33(1): 75-83.
[4] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[5] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[6] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[7] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[8] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 刘菲, 陈亮, 王广才, 陈鸿汉. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展, 2015, 30(8): 863-877.
[11] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[12] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[13] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高δ13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[14] 卢辉雄, 王永军, 汪冰, 张恩, 王瑞军, 李名松. 基于GIS的层次分析法在沽源地区铀成矿预测中的应用[J]. 地球科学进展, 2014, 29(8): 968-973.
[15] 张文媛, 王翠芝, 魏晓灿, 范明森, 陈丽华. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 2014, 29(8): 974-984.