1 |
Birchill A J , Hartner N T , Kunde K , et al . The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean [J]. Scientific Reports, 2019, 9(1): 1 435.
|
2 |
Tu Xiaoxia . The effect of iron to the primary production in the ocean[J]. Journal of Agricultural Mechanization Research, 2007, (3): 18-20.
|
|
屠霄霞 . 铁对海洋初级生产力的影响[J]. 农机化研究, 2007, (3): 18-20.
|
3 |
Martin J H , Gordon M , Fitzwater S E . The case for iron [J]. Limnology & Oceanography, 1991, 36(8): 1 793-1 802.
|
4 |
Hogle S L , Barbeau K A , Gledhill M . Heme in the marine environment: From cells to the iron cycle [J]. Metallomics, 2014, 6(6): 1 107-1 120.
|
5 |
Emerson D . Biogenic iron dust: A novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere [J]. Frontiers in Marine Science, 2019, 6: 22.
|
6 |
Watson A J , Bakker D C E , Ridgwell A J , et al . Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407(6 805): 730.
|
7 |
Zhou L , Tan Y , Huang L , et al . Aluminum effects on marine phytoplankton: Implications for a revised iron hypothesis (Iron-Aluminum Hypothesis) [J]. Biogeochemistry, 2018, 139(2): 123-137.
|
8 |
Tagliabue A , Bowie A R , Boyd P W , et al . The integral role of iron in ocean biogeochemistry [J]. Nature, 2017, 543(7 643): 51-59.
|
9 |
Norman L , Cabanesa D J , Blanco-Ameijeiras S , et al . Iron biogeochemistry in aquatic systems: From source to bioavailability [J]. Chimia International Journal for Chemistry, 2014, 68(11): 764-771.
|
10 |
Havens S M , Hassler C S , North R L , et al . Iron plays a role in nitrate drawdown by phytoplankton in Lake Erie surface waters as observed in lake-wide assessments [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2012, 69(2): 369-381.
|
11 |
Qin Yanwen , Zhang Manping . Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Advances in Marine Science, 1998,16(3): 67-75.
|
|
秦延文, 张曼平 . 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 海洋科学进展, 1998,16(3): 67-75.
|
12 |
Birchill A J , Hartner N T , Kunde K , et al . The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean [J]. Scientific Reports, 2019, 9(1): 1 435.
|
13 |
Naito K , Matsui M , Imai I . Ability of marine eukaryotic red tide microalgae to utilize insoluble iron [J]. Harmful Algae, 2005, 4(6): 1 021-1 032.
|
14 |
McRose D L , Seyedsayamdost M R , Morel F M M . Multiple siderophores: Bug or feature? [J]. Journal of Biological Inorganic Chemistry, 2018, 23(7): 983-993.
|
15 |
Kazamia E , Sutak R , Paz-Yepes J , et al . Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms [J]. Science Advances, 2018, 4(5):eaar4 536.
|
16 |
Blain S , Tagliabue A . Iron Cycle in Oceans[M]. Hoboken,New Jersey: John Wiley & Sons, 2016.
|
17 |
Wells M L , Trick C G , Cochlan W P , et al . Domoic acid: The synergy of iron, copper, and the toxicity of diatoms [J]. Limnology and Oceanography, 2005, 50(6): 1 908-1 917.
|
18 |
Decho A W , Gutierrez T . Microbial Extracellular Polymeric Substances (EPSs) in ocean systems [J]. Frontiers in Microbiology, 2017, 8: 922.
|
19 |
Hassler C S , Schoemann V , Nichols C M , et al . Saccharides enhance iron bioavailability to Southern Ocean phytoplankton [J]. Proceedings of the National Academy of Sciences, 2011, 108(3): 1 076-1 081.
|
20 |
Tortell P D , Maldonado M T , Price N M . The role of heterotrophic bacteria in iron-limited ocean ecosystems [J]. Nature, 1996, 383(6 598): 330-332.
|
21 |
Bonnain C , Breitbart M , Buck K N . The ferrojan horse hypothesis: Iron-virus interactions in the ocean [J]. Frontiers in Marine Science, 2016, 3: 82.
|
22 |
Mackey K R , Post A F , Mcilvin M R , et al . Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 9 944-9 949.
|
23 |
Hogle S L , Bianca B , Barbeau K A . Direct heme uptake by phytoplankton-associated roseobacter bacteria [J]. Msystems, 2017, 2(1): e00124-16.
|
24 |
Maldonado M T , Price N M . Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46(11/12): 2 447-2 473.
|
25 |
Johnson K S , Gordon R M , Coale K H . What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 1997, 57(3/4): 137-161.
|
26 |
Chen Lei , Zhang Hongxia , Li Ying , et al . The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9): 1 069-1 078.
|
|
陈蕾,张洪霞,李莹,等 .微生物在地球化学铁循环过程中的作用[J]. 中国科学:生命科学, 2016, 46(9): 1 069-1 078.
|
27 |
Straub K L , Benz M , Schink B . Iron metabolism in anoxic environments at near neutral pH [J]. Fems Microbiology Ecology, 2000, 34(3): 181-186.
|
28 |
Makita H . Iron-oxidizing bacteria in marine environments: Recent progresses and future directions [J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
|
29 |
Emerson D . The role of iron-oxidizing bacteria in biocorrosion: A review [J]. Biofouling, 2018,34(9):989-1 000.
|
30 |
Nelson Y M , Lion L W , Ghiorse W C , et al . Production of biogenic Mn oxides by leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics [J]. Applied and Environmental Microbiology, 1999, 65(1): 175-180.
|
31 |
Makita H . Iron-oxidizing bacteria in marine environments: Recent progresses and future directions [J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
|
32 |
Bryce C , Blackwell N , Schmidt C , et al . Microbial anaerobic Fe(II) oxidation-ecology, mechanisms and environmental implications [J]. Environmental Microbiology, 2018,20(10):3 462-3 483.
|
33 |
Kappler A , Schink B , Newman D K . Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1 [J]. Geobiology, 2010, 3(4):235-245.
|
34 |
Chakraborty A , Picardal F . Neutrophilic, nitrate-dependent, Fe(II) oxidation by a dechloromonas species [J]. World Journal of Microbiology Biotechnology, 2013, 29(4): 617-623.
|
35 |
Fleming E J , Langdon A E , Martinez-Garcia M , et al . What's new is old: Resolving the identity of leptothrix ochracea using single cell genomics, pyrosequencing and fish [J]. PLoS ONE, 2011, 6(3): e17769.
|
36 |
Hu Min , Li Fangbai . Soil microbe mediated iron cycling and its environmental implication[J]. Acta Pedologica Sinica, 2014,5(14): 683-698.
|
|
胡敏,李芳柏 .土壤微生物铁循环及其环境意义[J]. 土壤学报, 2014,5(14): 683-698.
|
37 |
Luo Hailin , Tang Jia , Zhou Puxiong , et al . Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology, 2018, 37(6): 1 620- 1 627.
|
|
罗海林, 汤佳, 周普雄, 等 . 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志, 2018, 37(6): 1 620-1 627.
|
38 |
Lovley D R . Dissimilatory Fe(III) and Mn(IV) reduction [J]. Advances in Microbial Physiology, 2004, 49(2): 259-287.
|
39 |
Ebrahiminezhad A , Manafi Z , Berenjian A , et al . Iron-reducing bacteria and iron nanostructures [J]. Journal of Advanced Medical Sciences and Applied Technologies, 2017, 3(1): 9-16.
|
40 |
Lovley D R . Microbial Fe(III) reduction in subsurface environments [J]. Fems Microbiology Reviews, 2010, 20(3/4): 305-313.
|
41 |
Newsome L , Lopez Adams R , Downie H F , et al . NanoSIMS imaging of extracellular electron transport processes during microbial iron (III) reduction [J]. FEMS Microbiology Ecology, 2018, 94(8):fiy104.
|
42 |
Shi L , Richardson D J , Wang Z , et al . The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer [J]. Environmental Microbiology Reports, 2009, 1(4): 220-227.
|
43 |
Wang Wenyan , Quan Xiangchun , He Mengchang , et al . Review on the mechanism and development of ferric iron microbial reduction[J]. Environmental Pollution & Control, 2006, 28(2): 116-120.
|
|
王文燕,全向春,何孟常,等 . Fe(Ⅲ)微生物还原机理及其研究进展[J]. 环境污染与防治, 2006, 28(2): 116-120.
|
44 |
Conway T M , John S G . Quantification of dissolved iron sources to the North Atlantic Ocean [J]. Nature, 2014, 511(7 508): 212-215.
|
45 |
Gruber N . Elusive marine nitrogen fixation [J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4 246-4 248.
|
46 |
Weber T , Deutsch C . Local versus basin-scale limitation of marine nitrogen fixation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24): 8 741-8 746.
|
47 |
Kopf S H , Henny C , Newman D K . Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments [J]. Environmental Science and Technology, 2013, 47: 2 602-2 611.
|
48 |
Slomp C P , Mort H P , Jilbert T , et al . Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane [J]. PLoS ONE, 2013, 8(4): e62386.
|
49 |
Eberlein T , Van de Waal D B , Brandenburg K M , et al . Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species [J]. Marine Ecology Progress Series, 2016, 543: 127-140.
|
50 |
Hayes C T , Wallace D J . Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia [C]//AGU Fall Meeting. AGU Fall Meeting Abstracts, 2017.
|
51 |
Lin Xiaojuan , Gao Shan , Zhang Tianyu , et al . Research progress and application status of seawater eutrophication evaluation methods[J]. Advances in Earth Science, 2018, 33(4): 373-384.
|
|
林晓娟,高姗,仉天宇,等 . 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
|
52 |
Boyd P W , Strzepek R F , Ellwood M J , et al . Why are biotic iron pools uniform across high-and low-iron pelagic ecosystems? [J]. Global Biogeochemical Cycles, 2015, 29(7): 1 028-1 043.
|
53 |
Firme G F , Rue E L , Weeks D A , et al . Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry [J]. Global Biogeochemical Cycles, 2003, 17(1).DOI:10.1029/2001GB001824 .
doi: 10.1029/2001GB001824
|
54 |
Schlosser C , Klar J K , Wake B D , et al . Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1 438-1 442.
|
55 |
Hutchins D A , Boyd P W . Marine phytoplankton and the changing ocean iron cycle [J]. Nature Climate Change, 2016, 6(12): 1 072-1 079.
|
56 |
Weng Huanxin , Sun Xiangwei , Chen Jingfeng , et al . Limitation and synergistic effect of iron and phosphorus on the fulminant proliferation of prodinoflagellates and cryptophyta [J]. Progress in Natural Science, 2006, 16(6): 705-711.
|
|
翁焕新, 孙向卫, 陈静峰,等 .铁和磷对原甲藻和隐藻暴发性增殖的限制与协同影响[J]. 自然科学进展, 2006, 16(6): 705-711.
|
57 |
Fonseca-Batista D , Dehairs F , Riou V , et al . Nitrogen fixation in the eastern Atlantic reaches similar levels in the Southern and Northern Hemisphere [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 587-601.
|
58 |
Boyd P W , Ellwood M J . The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682.
|
59 |
Tagliabue A , Williams R G , Rogan N , et al . A ventilation- based framework to explain the regeneration-scavenging balance of iron in the ocean [J]. Geophysical Research Letters, 2015, 41(20): 7 227-7 236.
|
60 |
Holzer M , DeVries T , Bianchi D , et al . Objective estimates of mantle 3He in the ocean and implications for constraining the deep ocean circulation [J]. Earth and Planetary Science Letters, 2017, 458: 305-314.
|
61 |
Emilie L R , Virginie S , Charette M A , et al . The Ra-226-Ba relationship in the North Atlantic during GEOTRACES-GA01 [J]. Biogeosciences, 2018, 15(9): 3 027-3 048.
|