地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 499 -512. doi: 10.11867/j.issn.1001-8166.2019.05.0499

综述与评述 上一篇    下一篇

海水痕量元素—有机配体的配分特征与影响因素研究进展
泮枫敏 1, 2, 3( ),袁华茂 1, 2, 3, 4( ),宋金明 1, 2, 3, 4,段丽琴 1, 2, 3, 4   
  1. 1. 中国科学院海洋生态与环境科学重点实验室,中国科学院海洋研究所,山东 青岛 266071
    2. 中国科学院大学,北京 100049
    3. 青岛海洋科学与技术国家实验室 海洋生态与环境科学功能实验室,山东 青岛 266237
    4. 中国科学院海洋大科学中心,山东 青岛 266071
  • 收稿日期:2018-10-24 修回日期:2019-04-05 出版日期:2019-05-10
  • 通讯作者: 袁华茂 E-mail:15092139387@163.com;yuanhuamao@qdio.ac.cn
  • 基金资助:
    青岛海洋科学与技术国家实验室鳌山科技创新计划项目“微/痕量元素在绿潮生消过程中的调控与反馈机制”(编号:2016ASKJ02-4);国家自然科学基金委员会—山东省人民政府联合基金项目“海洋生态环境变化的生物地球化学机制”(编号:U1606404)

The Distribution of Trace Elements-Organic Ligands in Seawater and Factors Influencing Their Complexation

Fengmin Pan 1, 2, 3( ),Huamao Yuan 1, 2, 3, 4( ),Jinming Song 1, 2, 3, 4,Liqin Duan 1, 2, 3, 4   

  1. 1. Key Laboratory of Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2018-10-24 Revised:2019-04-05 Online:2019-05-10 Published:2019-07-04
  • Contact: Huamao Yuan E-mail:15092139387@163.com;yuanhuamao@qdio.ac.cn
  • About author:Pan Fengmin (1995-), female, Zhucheng City, Shandong Province, Master student. Research areas include marine biogeochemistry. E-mail: 15092139387@163.com
  • Supported by:
    Project supported by Aoshan Technology Innovation Program of Qingdao National Laboratory for Marine Science and Technology “Regulation and feedback mechanism of micro/trace elements in the green tide generation and elimination process”(No.2016ASKJ02-4);The National Natural Science Foundation of China and Shandong Province Joint Fund “Biogeochemical mechanism of marine ecological environment changes”(No.U1606404)

在痕量元素的海洋生物地球化学循环过程中,有机配体直接控制痕量元素在不同形态及粒径范围内的分配,进而影响痕量元素的迁移转化过程和生物可利用性。深入研究海水中痕量元素—有机配体的配分特征及影响因素,明确有机配体分子量组分及其对痕量元素的配合作用差异,对于了解痕量元素的生物地球化学行为,评估痕量元素的生物可利用性和毒性效应均具有十分重要的意义。对海水中痕量元素—有机配体的分布规律、配分特征及盐度、pH、氧化还原条件和生物活动对配体的影响进行了系统总结。海水中的有机配体一般以低分子量部分为主体,配合能力因元素性质差异存在随分子量增加而提高或降低的不同趋势。除此之外,有机配体的结构、配合能力及分子量分布随水体各物理化学参数的变化而改变。盐度的增加会降低有机配体相邻官能团的静电排斥力从而降低配体的配合能力,还会导致高分子量金属有机配合物发生絮凝和降解而去除。pH的增加不仅可以促使有机配体离子化,还能促进部分痕量元素水解为与有机配体亲和力更高的形式,提高有机配体配合率。氧化还原环境同时影响了痕量元素的价态和有机配体的浓度,间接影响痕量元素—有机配体的配合率。浮游植物利用及微生物分解可以增加低分子量有机配体的比例,从而提高其配合能力,但当生物遭受过量金属离子的毒性胁迫时,其细胞内会释放胞内配体,将致毒元素转化为配合物并排出体外,从而增加水体中痕量元素高分子量有机配体的浓度。未来应结合有机物结构分析技术及痕量元素分离检测技术,系统研究海洋环境中不同分子量有机配体的结构及与痕量元素配合强度的相互关系,进一步揭示痕量元素的迁移转化过程与生态学意义。

Organic metal-binding ligands represent an essential role in the bioavailability of trace elements since they govern the species and sizes of those elements in seawater. The distribution and properties of organic ligands in seawater as well as the factors influencing their complexation abilities were summarized in this paper. Most organic ligands exist in the low molecular weight fraction, and their concentration nearshore is often higher than that of open ocean while the vertical distribution varies in different areas. The complexation of trace elements and organic ligands is influenced by several factors such as molecular weight of organic ligands, salinity, pH, biological activities and redox conditions. Ligand with a lower molecular weight usually represents stronger complexation ability, whereas the opposite seems to be true sometimes due to the specific affinity between some elements and ligands. Increasing salinity lowers the electrostatic repulsion among adjacent functional groups of ligands and thus decreases their complexing rate, yet increasing pH promotes the ionization of organic ligands and results in the formation of more complexes. The utilization of phytoplankton and degradation of microorganism release more low molecular weight organic ligands while more high molecular weight ligands are released from marine organisms under heavy metal stress. Therefore, sufficient significance should be attached to characterizing the structure and molecular weight of organic ligands and exploring the interaction between trace elements and organic ligands and the influence of related marine factors on their behaviors, which will certainly help us to understand the global biogeochemical cycles and ecological significance of trace elements.

中图分类号: 

图1 南大洋中(01 000 m)溶解态铁、温度、盐度、硝酸盐、硅酸盐、荧光强度、总铁配体/强铁配体、细菌丰度的垂直分布[ 17 ]
Fig.1 The vertical distribution of dissolved iron, temperature, salinity, nitrate, silicate, fluorescence, total iron ligands/strong iron ligands and bacterial abundance in Southern Ocean (01 000 m)[ 17 ]
图2 东北太平洋中总溶解态铜,铜强配体,铜弱配体的垂直分布[ 19 ]
Fig.2 The vertical distribution of total dissolved copper, strong copper ligands and weak copper ligands in Northeastern Pacific Ocean [ 19 ]
图3 溶解有机物,溶解态金属及配合物,多核金属簇,胶体,微生物的粒径分布[ 21 ]
Fig.3 The size distribution of dissolved organic matters, dissolved metal complexes, polynuclear cluster, colloids and microorganisms [ 21 ]
图4 不同水体类型(河流、湖泊、海洋)中溶解有机物的分子量分布[ 23 ]
Fig.4 The size distribution of dissolved organic matters in different aquatic environments (river, lake and ocean)[ 23 ]
表1 不同类型溶解有机物的分子量分布 [ 31 ]
Table 1 The distribution of molecular weight of different dissolved organic matters [ 31 ]
图5 与有机物分子量相关的海洋学过程[ 54 ]
Fig.5 The oceanographic processes related to the molecular weight of organic matters [ 54 ]
图6 盐度对DOM有关物理化学过程的影响[ 55 ]
Fig.6 The influence of salinity to the physiochemistry processes related to DOM [ 55 ]
表 2 部分海区与强有机配体结合的 Cu2+强有机配体以及估算不同 pH条件下自由 Cu2+ 的浓度 [ 62 ]
Table 2 The concentration of Cu2+ complexation with L1,L1 and estimated free Cu2+(pH=8.1, pH=7.4) [ 62 ]
1 Ren Chengzhe , Yuan Huamao , Song Jinming ,et al . Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017,32(9):959-971.
任成喆, 袁华茂, 宋金明, 等 . 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017,32(9):959-971.
2 Hiemstra T , Riemsdijk W H V . Biogeochemical speciation of Fe in ocean water[J]. Marine Chemistry, 2006, 102(34):181-197.
3 Kungolos A , Samaras P , Tsiridis V , et al . Bioavailability and toxicity of heavy metals in the presence of natural organic matter[J]. Environmental Letters, 2006, 41(8):1 509-1 517.
4 Morel F M , Price N M . The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5 621):944-947.
5 Vraspir J M , Butler A . Chemistry of marine ligands and siderophores[J]. Annual Review of Marine Science, 2009, 1(1):43.
6 Phinney J T , Bruland K W . Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom thalassiosira weissflogii[J]. Environmental Science & Technology, 1994, 28(11):1 781.
7 Campbell P G C , Errécalde O , Fortin C , et al . Metal bioavailability to phytoplankton—Applicability of the biotic ligand model[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2002, 133(1):189-206.
8 Roditi H A , Fisher N S , Sa?udowilhelmy S A . Uptake of dissolved organic carbon and trace elements by zebra mussels[J]. Nature, 2000, 407(6 800):78-80.
9 Lamelas C , Pinheiro J P , Slaveykova V I . Effect of humic acid on Cd(II), Cu(II), and Pb(II) uptake by freshwater algae: Kinetic and cell wall speciation considerations[J]. Environmental Science & Technology, 2009, 43(3):730-735.
10 Br?utigam A , Schauml?ffel D , Krauss G J , et al . Analytical approach for characterization of cadmium-induced thiol peptides—A case study using Chlamydomonas reinhardtii[J]. Analytical & Bioanalytical Chemistry, 2009, 395(6):1 737-1 747.
11 Boyd T J , Wolgast D M , Rivera-Duarte I , et al . Effects of dissolved and complexed copper on heterotrophic bacterial production in San Diego Bay[J]. Microbial Ecology, 2005, 49(3):353-366.
12 Nogueira P F , Mel?o M G , Lombardi A T , et al . The effects of Anabaena spiroides exopolysaccharides on copper accumulation in an aquatic food chain[J]. Aquatic Toxicology, 2009, 93(2):125-130.
13 Doig L E , Liber K . Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures[J]. Aquatic Toxicology, 2006, 76(3):203-216.
14 And P C P , Fisher N S . Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies[J]. Environmental Science & Technology, 2007, 41(1):125-131.
15 Koukal B , Guéguen C , Pardos M , et al . Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata[J]. Chemosphere, 2003, 53(8):953-961.
16 Buck K N , Selph K E , Barbeau K A . Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean[J]. Marine Chemistry, 2010, 122(1):148-159.
17 Ibisanmi E , Sander S G , Boyd P W , et al . Vertical distributions of iron-(III) complexing ligands in the Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(21):2 113-2 125.
18 Li Yan . The Distribution of Dissolved Iron and Its Organic Ligands in the East China Sea and Yellow Sea[D]. Qingdao:Ocean University of China, 2014.
李岩 . 东、黄海溶解态铁及其有机配体的分布[D].青岛:中国海洋大学, 2014.
19 Whitby H , Posacka A M , Maldonado M T , et al . Copper-binding ligands in the NE Pacific[J]. Marine Chemistry, 2018,204:36-48.
20 Heller M I , Croot P L . Copper speciation and distribution in the Atlantic sector of the Southern Ocean[J]. Marine Chemistry, 2015, 173:253-268.
21 Aiken G R , Hsu-Kim H , Ryan J N . Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science & Technology, 2011, 45(8):3 196-3 201.
22 Leenheer J A , Croue J P . Characterizing dissolved aquatic organic matter[J]. Environmental Science & Technology, 2003, 37(1):19A-26A.
23 Xu H , Guo L . Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters[J]. Water Research, 2017, 117:115.
24 Li Xiaoyin , Cheng Fang . The characteristics of dissolved organic matters molecular weight distribution in Tianjin Lingang seawater[J].Tianjin Chemical Industry,2014,28(1):1-4.
李晓殷, 程方 . 天津临港海域海水中溶解性有机物相对分子质量分布特性[J]. 天津化工, 2014, 28(1):1-4.
25 Xu H , Houghton E M , Houghton C J , et al . Variations in size and composition of colloidal organic matter in a negative freshwater estuary[J]. Science of the Total Environment, 2017, 615:931-941.
26 Midorikawa T , Tanoue E . Molecular masses and chromophoric properties of dissolved organic ligands for copper(II) in oceanic water[J]. Marine Chemistry, 1998, 62(3/4):219-239.
27 Fitzsimmons J N , Bundy R M , Al-Subiai S N , et al . The composition of dissolved iron in the dusty surface ocean: An exploration using size-fractionated iron-binding ligands[J]. Marine Chemistry, 2015, 173(3):125-135.
28 Vachet R W , Callaway M B . Characterization of Cu(II)-binding ligands from the Chesapeake Bay using high-performance size-exclusion chromatography and mass spectrometry[J]. Marine Chemistry, 2003, 82(1):31-45.
29 Wells M L , Kozelka P B , Bruland K W . The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI[J]. Marine Chemistry, 1998, 62(3/4):203-217.
30 Fu Pingqing , Liu Congqiang , Wu Fengchang . Binding of metal-ions with humic substances in aquatic environments: A review[J]. Humic Acid, 2005,23(6):143-148.
傅平青, 刘丛强, 吴丰昌 . 水环境中腐殖质—金属离子键合作用研究进展[J]. 腐植酸, 2005, 23(6):143-148.
31 Philippe A , Schaumann G E . Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review[J]. Environmental Science & Technology, 2014, 48(16):8 946-8 962.
32 Jiang Jiang , Wang Guo , Chen Fangyu , et al . Chelation relationship between Cu2+、Cd2+ and dissolved organic matter of peat[J]. Ecology and Environmental Sciences,2002,11(2):9-13.
蒋疆, 王果, 陈芳育,等 . 草炭溶解态有机物质与Cu2+、Cd2+络合稳定性的研究[J]. 生态环境学报, 2002, 11(2):9-13.
33 Christl I , Knicker H , Kogelknabner I , et al . Chemical heterogeneity of humic substances: Characterization of size fractions obtained by hollow-fibre ultrafiltration[J]. European Journal of Soil Science, 2010, 51(4):617-625.
34 Rodríguez F J , Nú?ez L A . Characterization of aquatic humic substances[J]. Water & Environment Journal, 2011, 25(2):163-170.
35 Linnik P N . Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies[J]. Analytical & Bioanalytical Chemistry, 2003, 376(3):405-412.
36 Wu F C , Evans R D , Dillon P J . High-performance liquid chromatographic fractionation and characterization of fulvic acid[J]. Analytica Chimica Acta, 2002, 464(1):47-55.
37 Yu Guifen , Jiang Xin , Zhao Zhenhua , et al . Dehydrogenase activity of Cd and Pb-contaminated soil in the presence of humic substances[J]. Environmental Chemistry,2006,25(2):168-170.
余贵芬, 蒋新, 赵振华,等 . 腐殖酸存在下镉和铅对土壤脱氢酶活性的影响[J]. 环境化学, 2006, 25(2):168-170.
38 Kikuchi T , Fujii M , Terao K , et al . Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan[J]. Science of the Total Environment, 2017, 576:36-45.
39 Wang Xuejun , Lou Tao , Xu Shaohui . Photodegradation of humic acid and its effects on the binding of Pb[J].Environmental Science & Technology,2010,(Suppl.2):119-121.
汪学军, 楼涛, 徐绍辉 . 腐殖酸的光化学降解及对铅结合性质的影响[J]. 环境科学与技术, 2010,(增刊 2):119-121.
40 Chen T C , Hseu Z Y , Jean J S , et al . Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan[J]. Chemosphere, 2016, 159:214-220.
41 Wen L S , Santschi P , Gill G , et al . Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase[J]. Marine Chemistry, 1999, 63(3/4): 185-212.
42 Muller F , Cuscov M . Alteration of the copper-binding capacity of iron-rich humic colloids during transport from peatland to marine waters[J]. Environmental Science & Technology, 2017, 51(6):3 214-3 222.
43 Amir B , Ewelina O , Dr K W , et al . Photoreduction of terrigenous Fe‐humic substances leads to bioavailable iron in oceans[J]. Angewandte Chemie International Edition, 2016, 55(22):6 417-6 422.
44 Fang K , Yuan D , Zhang L , et al . Effect of environmental factors on the complexation of iron and humic acid[J]. Journal of Environmental Sciences, 2015, 27(1):188-196.
45 Zhao Jing , Wu Min , Wang Wanbin , et al . Determination of impact factors on complexing stability constant of copper with DOM[J]. Shanghai Environmental Sciences,2014,(6):240-244.
赵婧, 吴敏, 王万宾,等 . 铜与DOM络合稳定常数的影响因子测定[J]. 上海环境科学, 2014,(6):240-244.
46 Yang R , Han S , Qu S , et al . Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea[J]. Scientific Reports, 2017, 7(1):1 381
47 Abdulla H A N , Minor E C , Dias R F , et al . Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensional correlation spectroscopy and principal component analysis approaches[J]. Geochimica et Cosmochimica Acta, 2013, 118(10):231-246.
48 Zhang Y , Zhang Y , Yu T . Quantitative characterization of Cu binding potential of Dissolved Organic Matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Frontiers of Environmental Science & Engineering, 2014, 8(5): 666-674.
49 Esteves V I , Otero M , Duarte A C . Comparative characterization of humic substances from the open ocean, estuarine water and fresh water[J]. Organic Geochemistry, 2009, 40(9):942-950.
50 Shi W , Jin Z , Hu S , et al . Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: A case of long-term exposure[J]. Chemosphere, 2017, 174:447-455.
51 Wang W , Chen M , Guo L , et al . Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China Estuary[J]. Science of the Total Environment, 2017, 603/604:434-444.
52 Christl I , Kretzschmar R . Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding[J]. Environmental Science & Technology, 2001, 35(12): 2 505-2 511.
53 Pokrovsky O S , Shirokova L S , Viers J , et al . Fate of colloids during estuarine mixing in the Arctic[J]. Ocean Science, 2014, 10(1):107-125.
54 Benner R , Amon R M W . The Size-reactivity continuum of major bioelements in the ocean[J]. Annual Revjew Marine Science, 2015, 7(1):185-205.
55 Massicotte P , Asmala E , Stedmon C , et al . Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans[J]. Science of the Total Environment, 2017, 609:180.
56 Abdulla H A N , Minor E C , Dias R F , et al . Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR[J]. Geochimica et Cosmochimica Acta, 2010, 74(13):3 815-3 838.
57 Harvey H R , Mannino A . The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers[J]. Organic Geochemistry, 2001, 32(4):527-542.
58 Fu J , Tang X L , Zhang J , et al . Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China[J]. Continental Shelf Research, 2013, 57(1):59-72.
59 Sun Weiping , Hu Chuanyu , Xue Bin , et al . Distribution of copper, cadmium and zinc in the surface of Prydzbay[J]. Chinese Journal of Polar Research,2009,21(1):25-32.
孙维萍, 扈传昱, 薛斌,等 . 南极普里兹湾表层海水中铜、镉、锌的分布[J]. 极地研究, 2009, 21(1):25-32.
60 Xu H , Zhang J , Ren J L , et al . Aluminum in the macrotidal Yalujiang estuary: Partitioning of Al along the estuarine gradients and flux[J]. Estuaries, 2002, 25(4):608-621.
61 Gledhill M , Achterberg E P , Li K , et al . Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters[J]. Marine Chemistry, 2015, 177: 421-433.
62 Millero F J , Woosley R , Ditrolio B , et al . Effect of ocean acidification on the speciation of metals in seawater[J]. Oceanography, 2009, 22(4):72-85.
63 Li Li . Study on the Complexation of Cu2+ Metal Ions with Dissolved Humic Acid and Influencing Factors[D]. Xi'an:Xi'an University of Architecture and Technology, 2009.
李丽 . 溶解态腐殖酸与Cu2+的络合作用及影响因素研究[D]. 西安:西安建筑科技大学, 2009.
64 Christensen J B , Christensen T H . The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater[J]. Water Research, 2000, 34(15):3 743-3 754.
65 Kim J M , Baars O , Fmm M . The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater[J]. Philosophical Transactions, 2016, 374(2 081):2015096.
66 Du Laing G , Rinklebe J , Vandecasteele B , et al . Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review[J]. Science of the Total Environment, 2009, 407(13): 3 972-3 985.
67 Hatje V , Payne T E , Hill D M , et al . Kinetics of trace element uptake and release by particles in estuarine waters: Effects of pH, salinity, and particle loading[J]. Environment International, 2004, 29(5):619-629.
68 Song Jinming , Duan Liqin . Environmental Biogeochemistry of Micro/Trace Elements in the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing:Science Press,2017.
宋金明,段丽琴 .渤黄东海微/痕量元素的环境生物地球化学[M].北京:科学出版社,2017.
69 Yang W , Guo L , Chuang C Y , et al . Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater[J]. Earth & Planetary Science Letters, 2015, 423:193-201.
70 Qin X , Liu F , Wang G , et al . Adsorption of humic acid from aqueous solution by hematite: Effects of pH and ionic strength[J]. Environmental Earth Sciences, 2015, 73(8):4 011-4 017.
71 Gao L , Wang Z , Li S , et al . Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China[J]. Chemosphere, 2018, 192:31-42.
72 Machado A A D S , Spencer K , Kloas W , et al . Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity[J]. Science of the Total Environment, 2016, 541:268-281.
73 Zhuang Yujun . Study on Distribution Characteristic and Chemical Forms of Heavy Metals in Inshore Sediment of Leizhou Peninsula[D]. Zhanjiang:Guangdong Ocean University,2011.
庄宇君 . 雷州半岛近岸沉积物重金属分布特征及化学形态研究[D]. 湛江:广东海洋大学, 2011.
74 Yao Qingzhen , Zhang Jing . Distribution of arsenic and selenium in the Yangtze Estuary and its adjacent areas[J]. Environmental Science,2009,30(1):33-38.
姚庆祯, 张经 . 长江口及邻近海域痕量元素砷、硒的分布特征[J]. 环境科学, 2009, 30(1):33-38.
75 Yin Yongguang , Li Yanbin , Ma Xu , et al . Role of natural organic matter in the biogeochemical cycle of mercury: Binding and molecular transformation[J]. Progress in Chemistry,2013,25(12):2 169-2 177.
阴永光, 李雁宾, 马旭,等 . 天然有机质介导的汞生物地球化学循环:结合作用与分子转化[J]. 化学进展, 2013, 25(12):2 169-2 177.
76 Hirose K . Chemical speciation of trace metals in seawater: A review[J]. Analytical Sciences, 2006, 22(8):1 055-1 063.
77 Li L , Xiaojing W , Jihua L , et al . Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 190-1 205.
78 Yan Li . Distribution of Dissolved Aluminum in the Changjiang Estuary and Its Adjacent Area and the Impact of Algal Blooms on the Biogeochemical Cycle of Aluminum[D].Qingdao: Ocean University of China,2011.
闫丽 . 长江口邻近海域溶解态铝的分布及藻类对其清除机制初探[D]. 青岛:中国海洋大学, 2011.
[1] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 王凡, 刘传玉, 胡石建, 高山, 贾凡, 张林林, 汪嘉宁, 冯俊乔. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782.
[3] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[4] 孙永明,史久新,阳海鹏. 海水热力学方程TEOS-10及其与海水状态方程EOS-80的比较[J]. 地球科学进展, 2012, 27(9): 1014-1025.
[5] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
[6] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[7] 吴学睿,李颖. GNSS-R陆面遥感中反射信号的极化特性研究[J]. 地球科学进展, 2012, 27(8): 895-900.
[8] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[9] 乔培军,王婷婷,翦知湣. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO 2- 3]的潜力[J]. 地球科学进展, 2012, 27(6): 686-693.
[10] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[11] 徐建,李建如,乔培军. 有孔虫Mg/Ca温度计研究进展——盐度影响及校正[J]. 地球科学进展, 2011, 26(9): 997-1005.
[12] 朱炎铭,陈尚斌,王道华,曹新款,李伍. 煤中金的研究现状及其展望[J]. 地球科学进展, 2010, 25(8): 794-799.
[13] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[14] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[15] 陈小红,胡建宇,邳青岭,刘广平,陈照章. 厦门—泉州近岸海域海表温、盐度密集走航观测[J]. 地球科学进展, 2009, 24(6): 629-635.
阅读次数
全文


摘要