1 |
Ren Chengzhe , Yuan Huamao , Song Jinming ,et al . Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017,32(9):959-971.
|
|
任成喆, 袁华茂, 宋金明, 等 . 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017,32(9):959-971.
|
2 |
Hiemstra T , Riemsdijk W H V . Biogeochemical speciation of Fe in ocean water[J]. Marine Chemistry, 2006, 102(34):181-197.
|
3 |
Kungolos A , Samaras P , Tsiridis V , et al . Bioavailability and toxicity of heavy metals in the presence of natural organic matter[J]. Environmental Letters, 2006, 41(8):1 509-1 517.
|
4 |
Morel F M , Price N M . The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5 621):944-947.
|
5 |
Vraspir J M , Butler A . Chemistry of marine ligands and siderophores[J]. Annual Review of Marine Science, 2009, 1(1):43.
|
6 |
Phinney J T , Bruland K W . Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom thalassiosira weissflogii[J]. Environmental Science & Technology, 1994, 28(11):1 781.
|
7 |
Campbell P G C , Errécalde O , Fortin C , et al . Metal bioavailability to phytoplankton—Applicability of the biotic ligand model[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2002, 133(1):189-206.
|
8 |
Roditi H A , Fisher N S , Sa?udowilhelmy S A . Uptake of dissolved organic carbon and trace elements by zebra mussels[J]. Nature, 2000, 407(6 800):78-80.
|
9 |
Lamelas C , Pinheiro J P , Slaveykova V I . Effect of humic acid on Cd(II), Cu(II), and Pb(II) uptake by freshwater algae: Kinetic and cell wall speciation considerations[J]. Environmental Science & Technology, 2009, 43(3):730-735.
|
10 |
Br?utigam A , Schauml?ffel D , Krauss G J , et al . Analytical approach for characterization of cadmium-induced thiol peptides—A case study using Chlamydomonas reinhardtii[J]. Analytical & Bioanalytical Chemistry, 2009, 395(6):1 737-1 747.
|
11 |
Boyd T J , Wolgast D M , Rivera-Duarte I , et al . Effects of dissolved and complexed copper on heterotrophic bacterial production in San Diego Bay[J]. Microbial Ecology, 2005, 49(3):353-366.
|
12 |
Nogueira P F , Mel?o M G , Lombardi A T , et al . The effects of Anabaena spiroides exopolysaccharides on copper accumulation in an aquatic food chain[J]. Aquatic Toxicology, 2009, 93(2):125-130.
|
13 |
Doig L E , Liber K . Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures[J]. Aquatic Toxicology, 2006, 76(3):203-216.
|
14 |
And P C P , Fisher N S . Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies[J]. Environmental Science & Technology, 2007, 41(1):125-131.
|
15 |
Koukal B , Guéguen C , Pardos M , et al . Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata[J]. Chemosphere, 2003, 53(8):953-961.
|
16 |
Buck K N , Selph K E , Barbeau K A . Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean[J]. Marine Chemistry, 2010, 122(1):148-159.
|
17 |
Ibisanmi E , Sander S G , Boyd P W , et al . Vertical distributions of iron-(III) complexing ligands in the Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(21):2 113-2 125.
|
18 |
Li Yan . The Distribution of Dissolved Iron and Its Organic Ligands in the East China Sea and Yellow Sea[D]. Qingdao:Ocean University of China, 2014.
|
|
李岩 . 东、黄海溶解态铁及其有机配体的分布[D].青岛:中国海洋大学, 2014.
|
19 |
Whitby H , Posacka A M , Maldonado M T , et al . Copper-binding ligands in the NE Pacific[J]. Marine Chemistry, 2018,204:36-48.
|
20 |
Heller M I , Croot P L . Copper speciation and distribution in the Atlantic sector of the Southern Ocean[J]. Marine Chemistry, 2015, 173:253-268.
|
21 |
Aiken G R , Hsu-Kim H , Ryan J N . Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science & Technology, 2011, 45(8):3 196-3 201.
|
22 |
Leenheer J A , Croue J P . Characterizing dissolved aquatic organic matter[J]. Environmental Science & Technology, 2003, 37(1):19A-26A.
|
23 |
Xu H , Guo L . Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters[J]. Water Research, 2017, 117:115.
|
24 |
Li Xiaoyin , Cheng Fang . The characteristics of dissolved organic matters molecular weight distribution in Tianjin Lingang seawater[J].Tianjin Chemical Industry,2014,28(1):1-4.
|
|
李晓殷, 程方 . 天津临港海域海水中溶解性有机物相对分子质量分布特性[J]. 天津化工, 2014, 28(1):1-4.
|
25 |
Xu H , Houghton E M , Houghton C J , et al . Variations in size and composition of colloidal organic matter in a negative freshwater estuary[J]. Science of the Total Environment, 2017, 615:931-941.
|
26 |
Midorikawa T , Tanoue E . Molecular masses and chromophoric properties of dissolved organic ligands for copper(II) in oceanic water[J]. Marine Chemistry, 1998, 62(3/4):219-239.
|
27 |
Fitzsimmons J N , Bundy R M , Al-Subiai S N , et al . The composition of dissolved iron in the dusty surface ocean: An exploration using size-fractionated iron-binding ligands[J]. Marine Chemistry, 2015, 173(3):125-135.
|
28 |
Vachet R W , Callaway M B . Characterization of Cu(II)-binding ligands from the Chesapeake Bay using high-performance size-exclusion chromatography and mass spectrometry[J]. Marine Chemistry, 2003, 82(1):31-45.
|
29 |
Wells M L , Kozelka P B , Bruland K W . The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI[J]. Marine Chemistry, 1998, 62(3/4):203-217.
|
30 |
Fu Pingqing , Liu Congqiang , Wu Fengchang . Binding of metal-ions with humic substances in aquatic environments: A review[J]. Humic Acid, 2005,23(6):143-148.
|
|
傅平青, 刘丛强, 吴丰昌 . 水环境中腐殖质—金属离子键合作用研究进展[J]. 腐植酸, 2005, 23(6):143-148.
|
31 |
Philippe A , Schaumann G E . Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review[J]. Environmental Science & Technology, 2014, 48(16):8 946-8 962.
|
32 |
Jiang Jiang , Wang Guo , Chen Fangyu , et al . Chelation relationship between Cu2+、Cd2+ and dissolved organic matter of peat[J]. Ecology and Environmental Sciences,2002,11(2):9-13.
|
|
蒋疆, 王果, 陈芳育,等 . 草炭溶解态有机物质与Cu2+、Cd2+络合稳定性的研究[J]. 生态环境学报, 2002, 11(2):9-13.
|
33 |
Christl I , Knicker H , Kogelknabner I , et al . Chemical heterogeneity of humic substances: Characterization of size fractions obtained by hollow-fibre ultrafiltration[J]. European Journal of Soil Science, 2010, 51(4):617-625.
|
34 |
Rodríguez F J , Nú?ez L A . Characterization of aquatic humic substances[J]. Water & Environment Journal, 2011, 25(2):163-170.
|
35 |
Linnik P N . Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies[J]. Analytical & Bioanalytical Chemistry, 2003, 376(3):405-412.
|
36 |
Wu F C , Evans R D , Dillon P J . High-performance liquid chromatographic fractionation and characterization of fulvic acid[J]. Analytica Chimica Acta, 2002, 464(1):47-55.
|
37 |
Yu Guifen , Jiang Xin , Zhao Zhenhua , et al . Dehydrogenase activity of Cd and Pb-contaminated soil in the presence of humic substances[J]. Environmental Chemistry,2006,25(2):168-170.
|
|
余贵芬, 蒋新, 赵振华,等 . 腐殖酸存在下镉和铅对土壤脱氢酶活性的影响[J]. 环境化学, 2006, 25(2):168-170.
|
38 |
Kikuchi T , Fujii M , Terao K , et al . Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan[J]. Science of the Total Environment, 2017, 576:36-45.
|
39 |
Wang Xuejun , Lou Tao , Xu Shaohui . Photodegradation of humic acid and its effects on the binding of Pb[J].Environmental Science & Technology,2010,(Suppl.2):119-121.
|
|
汪学军, 楼涛, 徐绍辉 . 腐殖酸的光化学降解及对铅结合性质的影响[J]. 环境科学与技术, 2010,(增刊 2):119-121.
|
40 |
Chen T C , Hseu Z Y , Jean J S , et al . Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan[J]. Chemosphere, 2016, 159:214-220.
|
41 |
Wen L S , Santschi P , Gill G , et al . Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase[J]. Marine Chemistry, 1999, 63(3/4): 185-212.
|
42 |
Muller F , Cuscov M . Alteration of the copper-binding capacity of iron-rich humic colloids during transport from peatland to marine waters[J]. Environmental Science & Technology, 2017, 51(6):3 214-3 222.
|
43 |
Amir B , Ewelina O , Dr K W , et al . Photoreduction of terrigenous Fe‐humic substances leads to bioavailable iron in oceans[J]. Angewandte Chemie International Edition, 2016, 55(22):6 417-6 422.
|
44 |
Fang K , Yuan D , Zhang L , et al . Effect of environmental factors on the complexation of iron and humic acid[J]. Journal of Environmental Sciences, 2015, 27(1):188-196.
|
45 |
Zhao Jing , Wu Min , Wang Wanbin , et al . Determination of impact factors on complexing stability constant of copper with DOM[J]. Shanghai Environmental Sciences,2014,(6):240-244.
|
|
赵婧, 吴敏, 王万宾,等 . 铜与DOM络合稳定常数的影响因子测定[J]. 上海环境科学, 2014,(6):240-244.
|
46 |
Yang R , Han S , Qu S , et al . Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea[J]. Scientific Reports, 2017, 7(1):1 381
|
47 |
Abdulla H A N , Minor E C , Dias R F , et al . Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensional correlation spectroscopy and principal component analysis approaches[J]. Geochimica et Cosmochimica Acta, 2013, 118(10):231-246.
|
48 |
Zhang Y , Zhang Y , Yu T . Quantitative characterization of Cu binding potential of Dissolved Organic Matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Frontiers of Environmental Science & Engineering, 2014, 8(5): 666-674.
|
49 |
Esteves V I , Otero M , Duarte A C . Comparative characterization of humic substances from the open ocean, estuarine water and fresh water[J]. Organic Geochemistry, 2009, 40(9):942-950.
|
50 |
Shi W , Jin Z , Hu S , et al . Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: A case of long-term exposure[J]. Chemosphere, 2017, 174:447-455.
|
51 |
Wang W , Chen M , Guo L , et al . Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China Estuary[J]. Science of the Total Environment, 2017, 603/604:434-444.
|
52 |
Christl I , Kretzschmar R . Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding[J]. Environmental Science & Technology, 2001, 35(12): 2 505-2 511.
|
53 |
Pokrovsky O S , Shirokova L S , Viers J , et al . Fate of colloids during estuarine mixing in the Arctic[J]. Ocean Science, 2014, 10(1):107-125.
|
54 |
Benner R , Amon R M W . The Size-reactivity continuum of major bioelements in the ocean[J]. Annual Revjew Marine Science, 2015, 7(1):185-205.
|
55 |
Massicotte P , Asmala E , Stedmon C , et al . Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans[J]. Science of the Total Environment, 2017, 609:180.
|
56 |
Abdulla H A N , Minor E C , Dias R F , et al . Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR[J]. Geochimica et Cosmochimica Acta, 2010, 74(13):3 815-3 838.
|
57 |
Harvey H R , Mannino A . The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers[J]. Organic Geochemistry, 2001, 32(4):527-542.
|
58 |
Fu J , Tang X L , Zhang J , et al . Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China[J]. Continental Shelf Research, 2013, 57(1):59-72.
|
59 |
Sun Weiping , Hu Chuanyu , Xue Bin , et al . Distribution of copper, cadmium and zinc in the surface of Prydzbay[J]. Chinese Journal of Polar Research,2009,21(1):25-32.
|
|
孙维萍, 扈传昱, 薛斌,等 . 南极普里兹湾表层海水中铜、镉、锌的分布[J]. 极地研究, 2009, 21(1):25-32.
|
60 |
Xu H , Zhang J , Ren J L , et al . Aluminum in the macrotidal Yalujiang estuary: Partitioning of Al along the estuarine gradients and flux[J]. Estuaries, 2002, 25(4):608-621.
|
61 |
Gledhill M , Achterberg E P , Li K , et al . Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters[J]. Marine Chemistry, 2015, 177: 421-433.
|
62 |
Millero F J , Woosley R , Ditrolio B , et al . Effect of ocean acidification on the speciation of metals in seawater[J]. Oceanography, 2009, 22(4):72-85.
|
63 |
Li Li . Study on the Complexation of Cu2+ Metal Ions with Dissolved Humic Acid and Influencing Factors[D]. Xi'an:Xi'an University of Architecture and Technology, 2009.
|
|
李丽 . 溶解态腐殖酸与Cu2+的络合作用及影响因素研究[D]. 西安:西安建筑科技大学, 2009.
|
64 |
Christensen J B , Christensen T H . The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater[J]. Water Research, 2000, 34(15):3 743-3 754.
|
65 |
Kim J M , Baars O , Fmm M . The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater[J]. Philosophical Transactions, 2016, 374(2 081):2015096.
|
66 |
Du Laing G , Rinklebe J , Vandecasteele B , et al . Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review[J]. Science of the Total Environment, 2009, 407(13): 3 972-3 985.
|
67 |
Hatje V , Payne T E , Hill D M , et al . Kinetics of trace element uptake and release by particles in estuarine waters: Effects of pH, salinity, and particle loading[J]. Environment International, 2004, 29(5):619-629.
|
68 |
Song Jinming , Duan Liqin . Environmental Biogeochemistry of Micro/Trace Elements in the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing:Science Press,2017.
|
|
宋金明,段丽琴 .渤黄东海微/痕量元素的环境生物地球化学[M].北京:科学出版社,2017.
|
69 |
Yang W , Guo L , Chuang C Y , et al . Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater[J]. Earth & Planetary Science Letters, 2015, 423:193-201.
|
70 |
Qin X , Liu F , Wang G , et al . Adsorption of humic acid from aqueous solution by hematite: Effects of pH and ionic strength[J]. Environmental Earth Sciences, 2015, 73(8):4 011-4 017.
|
71 |
Gao L , Wang Z , Li S , et al . Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China[J]. Chemosphere, 2018, 192:31-42.
|
72 |
Machado A A D S , Spencer K , Kloas W , et al . Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity[J]. Science of the Total Environment, 2016, 541:268-281.
|
73 |
Zhuang Yujun . Study on Distribution Characteristic and Chemical Forms of Heavy Metals in Inshore Sediment of Leizhou Peninsula[D]. Zhanjiang:Guangdong Ocean University,2011.
|
|
庄宇君 . 雷州半岛近岸沉积物重金属分布特征及化学形态研究[D]. 湛江:广东海洋大学, 2011.
|
74 |
Yao Qingzhen , Zhang Jing . Distribution of arsenic and selenium in the Yangtze Estuary and its adjacent areas[J]. Environmental Science,2009,30(1):33-38.
|
|
姚庆祯, 张经 . 长江口及邻近海域痕量元素砷、硒的分布特征[J]. 环境科学, 2009, 30(1):33-38.
|
75 |
Yin Yongguang , Li Yanbin , Ma Xu , et al . Role of natural organic matter in the biogeochemical cycle of mercury: Binding and molecular transformation[J]. Progress in Chemistry,2013,25(12):2 169-2 177.
|
|
阴永光, 李雁宾, 马旭,等 . 天然有机质介导的汞生物地球化学循环:结合作用与分子转化[J]. 化学进展, 2013, 25(12):2 169-2 177.
|
76 |
Hirose K . Chemical speciation of trace metals in seawater: A review[J]. Analytical Sciences, 2006, 22(8):1 055-1 063.
|
77 |
Li L , Xiaojing W , Jihua L , et al . Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 190-1 205.
|
78 |
Yan Li . Distribution of Dissolved Aluminum in the Changjiang Estuary and Its Adjacent Area and the Impact of Algal Blooms on the Biogeochemical Cycle of Aluminum[D].Qingdao: Ocean University of China,2011.
|
|
闫丽 . 长江口邻近海域溶解态铝的分布及藻类对其清除机制初探[D]. 青岛:中国海洋大学, 2011.
|