地球科学进展 ›› 2012, Vol. 27 ›› Issue (8): 901 -907. doi: 10.11867/j.issn.1001-8166.2012.08.0901

研究论文 上一篇    下一篇

黄河上游玛曲草原湍流统计特征分析
李锁锁 1,2 ,吕世华 1,高艳红 1,奥银焕 1,柳媛普 2   
  1. 1.中国科学院寒区旱区环境与工程研究所寒旱区陆面过程与气候变化重点实验室/黄河源区气候与环境综合观测研究站,甘肃 兰州 730000;
    2. 中国气象局兰州干旱气象研究所,甘肃省干旱气候变化与减灾重点实验室,中国气象局干旱气候变化与减灾重点开放实验室,甘肃 兰州 730020
  • 收稿日期:2011-12-30 修回日期:2012-04-16 出版日期:2012-08-10
  • 基金资助:

    中国科学院“西部博士”资助项目“动态植被—气候耦合模式对黄河源区放牧及生态修复工程的生态气候效应研究”;国家自然科学基金重点项目“黄河源区典型下垫面水热循环及其对区域气候的影响研究”(编号:41130961);国家自然科学基金项目“黄河源玛曲牧区草地退化对地表能量输送及碳通量特征的影响研究”(编号:40975008)资助.

Analysis of the Statistical Characteristics of the Turbulent Data at Maqu Area in the Upper Yellow River

Li Suosuo 1,2 ,Lü Shihua 1,Gao Yanhong 1,Ao Yinhuan 1,Liu Yuanpu 2   

  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Yellow River 
    Source Region Climate and Environment Observation and Research Station, Cold and Arid Regions 
    Environmental and Engineering Research Institute, Chinese Academy of Sciences,
    Lanzhou〓730000, China;
    2.Institute of Arid Meteorology, CMA, Key Laboratory of Arid Climatic Change and Reduction Disaster, Gansu
    Province, Key Laboratory of Arid Climatic Change and Reduction Disaster, CMA, Lanzhou〓730020, China
  • Received:2011-12-30 Revised:2012-04-16 Online:2012-08-10 Published:2012-08-10
湍流运动是大气最基本的运动特征,是大气能量物质交换的主要方式。利用玛曲气候与环境综合观测研究站2006年12月至2007年1月的湍流观测资料,分析了湍流方差特征、湍流动能及湍流强度等湍流统计特征,结果表明:无量纲化的风速脉动σ u/u *,σ v/u *,σ w/u *与稳定度z/L符合1/3次方规律;大气处于中性层结时,在近中性条件下,无量纲化风速方差σ u/u *,σ v/u *,σ w/u *分别趋于常数A=3.42,B=3.34,C=1.02;无因次化温度脉动方差σ T/|T *|和湿度脉动方差σq/|q *|与稳定度z/L的变化都比较离散,基本上不能拟合出-1/3次方规律。湍流动能随风速增大而增大,白天比夜间明显,相比之下,夜间湍流动能较小,且随风速的增大比较缓慢;湍流动能随稳定的变化是非常明显的,在稳定度近中性时湍流动能取得最大值。湍流强度I u,I v,I w随风速的增大而减小,当风速在0 m/s<V<2 m/s范围内时,湍流强度变化最明显,当V>5 m/s时,湍流强度变化很小。

Turbulent motion is the basic characteristics of atmospheric motion and main method of exchange of matter and energy. In this paper, the observed turbulence data   from Yellow River source region climate and environment observation and research station is used to calculate and analyze the turbulence transportation characteristic. The turbulence statistical characteristicσu/u*,σv/u*,σw/u* versus stability z/L are in agree with the “1/3”law, under neutral stratification condition,σu/u*,σv/u*,σw/u*  is near to a constant 3.42, 3.34, 1.02; The turbulence kinetic energy increases when wind speed increases, especially in day time; The turbulent kinetic energy is smaller in the night time than in day time, and the change trend of turbulent kinetic energy slower in night time than in day time; The change of turbulent kinetic energy virus stability parameter is obvious, and the maximum is under neutral stratification condition. The turbulent intensity increases when wind speed increases; When the wind speed is bigger than 0 and less than 2 m/s, the change of turbulent intensity is very obvious, when the wind speed is bigger than 5 m/s, the change of turbulent intensity is not obvious.

中图分类号: 

[1]Liu Shuhua, Li Jie, Liu Heping, et al. Characteristics of macroturbulence variables in EBEX-2000[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(4):503-509.[刘树华,李洁,刘和平,等.在EBEX-2000实验资料中的湍流宏观量特征[J].大气科学,2005,29(4):503-509.]

[2]Zhang Hongsheng, Li Fuyu, Chen Jiayi,et al. Statistical characteristics of atmospheric turbulence in different underlying surface conditions[J]. Plateau Meteorlogy, 2004, 23(5):598-604.[张宏升,李富余,陈家宜,等.不同下垫面湍流统计特征研究[J].高原气象, 2004, 23(5):598-604.]

[3]Shang Lunyu, Lü Shihua, Zhang Yu, et al. Analysis on atmospheric surface layer turbulence characteristic during soil freezing and thawing seasons in Eastern Tibet Plateau[J]. Plateau Meteorology, 2011, 30(1):30-37.[尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象, 2011,30(1):30-37.]

[4]Li Maoshan, Hu Zeyong, Ma Weiqiang, et al. The turbulent features in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 309-315.[李茂善,胡泽勇,马伟强,等.黑河流域上游大气湍流特征分析[J].冰川冻土, 2010, 32(2):309-315.]

[5]Zhang Longsheng,Ma Lipeng. Study on desertification in Maqu county, upstream of Huanghe River[J]. Journal of Desert Research, 2001,21(1):84-87.[张龙生,马立鹏. 黄河上游玛曲县土地沙漠化研究[J]. 中国沙漠,2001,21(1):84-87.]

[6]Pan Jinghu, Liu Juling. Land use change and its impact in the eco-environment on the Yellow River source region during the past 15 years[J]. Journal of Arid Land Resource and Environment,2005, 19(4):69-74.[潘竟虎,刘菊玲.黄河源区土地利用和景观格局变化及其生态环境效应[J].干旱区资源与环境,2005,19(4):69-74.]

[7]Arya S P S,Sundararajan A. An assessment of proposed similarity theories for the atmospheric boundary layer[J]. Boundary-Layer Meteorology,1976,10(2):149-166.

[8]Panofsky H A, Tennekes H, Lenschow D H,et al. The characteristic of turbulent velocity components in the surface layer under convective condition[J]. Boundary-Layer Meteorology,1977,11(2):355-361.

[9]Wang Jiemin, Liu Xiaohu, Ma Yaoming. Turbulence structure and transfer characteristics in the surface layer of HEIFE Gobi area[J]. Acta Meteorologica Sinica, 1993,51:343-350.[王介民,刘晓虎,马耀明.HEIFE戈壁地区近地层大气的湍流结构和输送特征[J].气象学报,1993,51:343-350.]

[10]Ma Yaoming, Ma Weiqiang, Hu Zeyong, et al. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002,21(5):514-517.[马耀明,马伟强,胡泽勇,等. 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5):514-517.]

[11]Zhong Lei, Ma Yaoming, Su Zhongbo, et al. Atmospheric turbulence and land-atmosphere energy transfer characteristics in the surface layer of the northern slope of Mt. Qomolangma area[J]. Advances in Earth Science, 2006,21(12):1 293-1 303.[仲雷, 马耀明,苏中波,等. 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 2006, 21(12):1 293-1 303.]

[12]Li Maoshao, Ma Yaoming, Ma Weiqiang, et al. Analysis of turbulence characteristics over the northern Tibetan Plateau area[J]. Advances in Atmospheric Sciences, 2006, 23(4): 579-585.

[13]Panofsky H A, Dutton J A. Atmospheric Turbulence[M].New York: John Wiley and Sons, 1984.

[14]Panofsky H A, Teanekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology, 1977, 11:355-361.

[15]Liu Huizhi, Hong Zhongxiang. Turbulent characteristics in the surface layer over Gerze in the Tibetan Plateau[J].Chinese Journal of Atmospheric Sciences, 2000,24(3):289-300.[刘辉志,洪忠祥.青藏高原改则地区近地层湍流特征[J].大气科学,2000,24(3):289-300.]

[16]Liu Huizhi, Hong Zhongxiang, Zhang Hongsheng. The turbulent characteristics in the surface layer over dune at Naiman in Inner Mongolia[J]. Chinese Journal of Atmospheric Sciences, 2003,27(3):389-398.[刘辉志,洪忠祥, 张宏升. 内蒙古奈曼流动沙丘下垫面湍流输送特征初步研究[J]. 大气科学,2003,27(3):389-398.]

[17]Liu Shuhua, Liu Heping, Hong Zhongxiang, et al. The turbulence structure in the near-surface atmospheric layer over the Horqin Grassland[J]. Sciatica Atmospheric Sinica, 1996,20(3):378-383.[刘树华,刘和平,洪忠祥,等. 我国草原下垫面低层大气湍流结构[J].大气科学,1996,20(3):378-383.]

[1] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[2] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[3] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[4] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[5] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[6] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[7] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[8] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[9] 顾磊, 张洪波 , 陈克宇, 俞奇骏. 陕北地区河川基流的时空演变规律[J]. 地球科学进展, 2015, 30(7): 802-811.
[10] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[11] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[12] 戴海伦, 代加兵, 舒安平, 张科利. 河岸侵蚀研究进展综述[J]. 地球科学进展, 2013, 28(9): 988-996.
[13] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[14] 邓铭江,龙爱华,李湘权,章毅,雷雨. 中亚五国跨界水资源开发利用与合作及其问题分析  [J]. 地球科学进展, 2010, 25(12): 1337-1346.
[15] 张运林;黄群芳;马荣华;陈伟民. 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005, 20(7): 772-777.
阅读次数
全文


摘要