地球科学进展 ›› 2012, Vol. 27 ›› Issue (8): 908 -915. doi: 10.11867/j.issn.1001-8166.2012.08.0908

研究论文 上一篇    下一篇

科西河跨境流域水旱灾害与防治
胡桂胜 1,2, 陈宁生 1, Narendra Khanal 3, 韩大为 4   
  1. 1.中国科学院山地灾害与地表过程重点实验室,中国科学院[]水利部 成都山地灾害与环境研究所,四川 成都 610041;
    2.中国科学院大学,北京 100049;3.尼泊尔特里布文大学地理学院,加德满都,尼泊尔;4.英国布里斯托尔大学土木学院,英国
  • 收稿日期:2011-11-14 修回日期:2012-02-20 出版日期:2012-08-10
  • 基金资助:

    “十一五”国家科技支撑计划课题“跨界河流冰湖堰塞湖形成与溃决风险评估及预警关键技术研究”专题“代表性跨界河流流域冰湖堰塞湖溃决灾害风险分析”(编号:2008BAB42B06)资助.

On the Water Hazards in the TransBoundary Kosi River Basin

Hu Guisheng 1,2, Chen Ningsheng 1, Narendra Khanal 3, Han Dawei 4   

  1. 1.Key Laboratory of Mountain Hazards and Surface Processes, Chinese Academy of Sciences, Institute of
    Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;
    3.Central Department of Geography, TU, Nepal; 4.Department of Civil Engineering, University of Bristol
  • Received:2011-11-14 Revised:2012-02-20 Online:2012-08-10 Published:2012-08-10

科西河流域是恒河的一个重要支流,地跨中国、尼泊尔和印度3个国家,流域面积7.15万km2,流域具有世界上最大的高差(从海拔8 848 m的珠穆朗玛峰到海拔60 m的恒河平原),最为完整的气候、土壤和植被带谱。流域发育有罕见的多类型水旱灾害,主要有冰湖溃决、洪水、干旱、水土流失等。通过实地调查这一代表性跨界流域的水文、气象、地质、地貌、土壤植被和区域社会经济等基本特征并结合已有的研究资料,揭示流域冰湖溃决、洪水、干旱等水旱灾害的特征和时空发育规律。流域冰湖溃决灾害集中于科西河流域上级支流,灾害损失巨大,并由于溃决洪水的侵蚀,沿途链状滑坡泥石流灾害发育;洪水灾害主要集中于流域下游,在相对较高标准的防洪体系中,洪水灾害是自然因素和人为因素相结合产生的,并造成流域水土流失严重;干旱灾害范围大,年内持续时间长,并且由于人口增加和生态退化进一步严重化。最后,依据流域水旱灾害特点,提出一系列减灾策略与措施。

The Kosi River is an important tributary of the Ganges that passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8 848 m of  Mount Jolmo Lungma(Mt.Everest) to 60 m of the Ganges plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacierlake outburst, debris flow, landslide, flood, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socioeconomics. Glacierlake outbursts are a huge threat to the local population in the region and   usually further trigger landslides and debris flows. Floods are usually a result of interaction between manmade hydraulic structures and the natural environment. Droughts tend to last over long periods and affect vast areas. Debris flows are widespread and occur in clusters. Rapid population increase, decline of ecosystems and climate changes have further exacerbated water related hazards in the region. Finally, the paper has proposed a set of mitigating strategies and measures.

中图分类号: 

[1]Immerzeel W W,van Beek  L P H, Bierkens M F P. Climate change will affect the Asian water towers[J].Science, 2010, 328(5 984): 1 382-1 384.

[2]Kale V S.  Himalayan catastrophe that engulfed North Bihar[J]. Journal of the Geological Society of India, 2008,72(6): 713-719.

[3]Ajaya Dixit. Kosi Embankment Breach in Nepal:Need for a paradigm shift in responding to floods[J].Economic & Political Weekly February, 2009,44(6): 70-78.

[4]Mool P K. Glacier lake outburst floods in Nepal[J].Journal of Nepal Geological Society, 1995,10(Special issue):88.

[5]Yuan Yi. Advances in the assessment of natural disaster situation[J].Advnces in Earth Science, 2010,25(2): 22-32. [袁艺. 自然灾害灾情评估研究与实践进展[J]. 地球科学进展,2010,25(2): 22-32.]

[6]Che Tao, Jin Rui, Li Xin, et al. Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu Basin of Tibet during the last two decades[J].Journal of Glaciology and Geocryology, 2004,26(4):397-402. [车涛, 晋锐, 李新, 等. 近20 a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析[J]. 冰川冻土,2004,26(4): 397-402.]

[7]Chen Xiaoqing,Cui Peng, Yong Li, et al. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River Basin, Nyalam, Xizang (Tibet)[J].Geomorphology , 2007,88(314): 298-311.

[8]Church M.Baffin Island Sandurs—A Study of Arctic Fluvial processes[M].Ottawa:Geological Society of Canada Bulletin,1972.

[9]Clague J J, Mathews W H. The magnitude of jkulhlaups[J].Journal of Glaciology, 1973, 12(66): 501-504.

[10]Thorarinsson S. The ice-dammed lakes of Iceland with particular reference to their value as indicators of glacial oscillations[J].Geografiska Annaler,1939,21(3): 216-242.

[11]Haeberli W. Frequency and characteristics of glacier floods in the Swiss Alaps[J].Annals of Glaciology, 1983, 4: 85-90.

[12]Liu C H, Sharma C K. Report on First Expedition to Glaciers and Glacier Lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun kosi River Basins, Xizang (Tibet), China[M]. Beijing: Science Press, 1988:1 192.

[13]Liu Wei. Preliminary study on debris flow induced by glacier lake outburst in Tibet[J].Hydrogeology and Engineering Geology, 2006,(3): 88-92.[刘伟. 西藏典型冰湖溃决型泥石流的初步研究[J]. 水文地质与工程地质,2006,(3): 88-92.]

[14]Fan Jihui, Wu Caiyan, Cheng Genwei. Distribution characteristics and influencing factors of geological hazards in Tibet[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 806-812.

[15]Xu Daoming. Characteristics of debris flow caused by outburst of glacial lake in Boqu River, Xizang, China[J].GeoJournal, 1985,17(4): 569-580.

[16]Meon G,  Schwahz W. Estimation of glacier lake outburst flood and its impact on a hydro project in Nepal[J].Snow and Glacier Hydrology,1992, 218: 331-339.

[17]Bhalme H N, Mooley D A. Large-scale droughts/floods and monsoon circulation[J].American Meteorological Society, 1980,108(8): 1 197-1 211.

[18]Ramaswamy R I. Floods, Himalayan rivers, Nepal: Some heresies[J]. Economic & Political Weekly, 2008,43(46): 37-40.

[19]Rashmi Kiran Shrestha, Rhodante Ahlers, Marloes Bakker, et al. Institutional dysfunction and challenges in flood control: A case study of the Kosi flood 2008[J].Economic & Political Weekly, 2010,45(2): 45-53.

[20]Yamada T. Preliminary Work Report on Glacier Lake Outburst Flood in the Nepal Himalayas[R]. WECS Report,No.4/1/291191/1/1 Seq. No. 387.1991.

[21]Ran Dachuan, Luo Quanhua, Liu Bin, et al. Effect of soil-retaining dams on flood and sediment reduction in middle reaches of Yellow River[J].Journal of Hydraulic Engineering,2004,(5): 7-14.[冉大川,罗全华,刘斌,等. 黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报,2004,(5):7-14.]

[22]Sharma C K. Partial drought conditions in Nepal[J].Hydrological Sciences Bulletin des Sciences Hydrologiques,1979,24(3):327-334.

[23]Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J].Advances in Earth Science,2011,26(7): 763-778.[张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011,26(7): 763-778.]

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[3] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[4] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[5] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[6] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[7] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[8] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[9] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[10] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[11] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[12] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[13] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
[14] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[15] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
阅读次数
全文


摘要