地球科学进展 ›› 2019, Vol. 34 ›› Issue (6): 561 -572. doi: 10.11867/j.issn.1001-8166.2019.06.0561

所属专题: “一带一路”绿色发展研究

国家重点研发计划项目    下一篇

亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题
陈发虎 1, 2( ),董广辉 2,陈建徽 2,郜永祺 3, 4,黄伟 2,王涛 3,陈圣乾 2,侯居峙 1   
  1. 1. 中国科学院青藏高原研究所, 高寒生态与生物多样性重点实验室, 北京 100101
    2. 兰州大学资源环境 学院,西部环境教育部重点实验室, 甘肃 兰州 730000
    3. 中国科学院大气物理研究所, 竺可桢— 南森国际研究中心, 北京 100029
    4. 南森环境与遥感中心, 卑尔根 N-5006, 挪威
  • 收稿日期:2019-05-21 修回日期:2019-05-27 出版日期:2019-06-10
  • 基金资助:
    国家重点研究发展计划项目“亚洲中部干旱区气候变化影响与丝路文明变迁研究”(2018YFA0606404);国家自然科学基金杰出青年科学基金项目“环境考古与环境变化”(41825001)

Climate Change and Silk Road Civilization Evolution in Arid Central Asia: Progress and Issues

Fahu Chen 1, 2( ),Guanghui Dong 2,Jianhui Chen 2,Yongqi Gao 3, 4,Wei Huang 2,Tao Wang 3,Shengqian Chen 2,Juzhi Hou 1   

  1. 1. Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2. Key Laboratory of West China’s Environmental System, College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China
    3. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    4. Nansen Environmental and Remote Sensing Center, Bergen N-5006, Norway
  • Received:2019-05-21 Revised:2019-05-27 Online:2019-06-10 Published:2019-07-05
  • About author:Chen Fahu(1962-), male, Danfeng County, Shaanxi Province, Professor, Academician of Chinese Academy of Sciences. Research areas include environmental change and the evolution of human civilization. E-mail: fhchen@itpcas.ac.cn
  • Supported by:
    Foundation item: Project supported by the National Key R&D Program of China “Research on the impacts of climate change in arid central Asia and development of silk road civilization”(No. 2018YFA0606404);The National Natural Science Foundation of China “Environmental archaeology and environmental change”(No. 41825001)

亚洲中部干旱区是对全球气候变化响应最为敏感的地区之一,也是水文变化剧烈和生态环境脆弱的地区。该地区包括了古丝绸之路的主体,在东西方交流和丝路文明兴衰历史中发挥了关键的作用。科学评估全球增温背景下亚洲中部干旱区人类社会可持续发展面临的风险,是广受关注的重大科学问题。东西方交流和丝路文明发展历史及其与气候环境变化关系的研究,可为认识该地区不同时间尺度人地关系演变的规律提供科学依据。通过总结东西方交流与丝路文明兴衰历史、亚洲中部干旱区全新世气候变化过程、多时间尺度气候—水文变化机制以及人与环境相互作用的过程与规律等领域的研究进展,提出目前亚洲中部干旱区全新世气候环境变化时空格局和丝路文明演化的过程,以及人与环境相互作用机制的研究存在明显不足。破解亚洲中部干旱区气候变化和文化演化研究区域不均衡问题,加强地学与考古学等多学科交叉研究,是推进气候变化与丝路文明变迁研究的有效途径。这对理解该地区人地关系演化规律、应对气候变化带来的挑战、服务国家“一带一路”倡议具有重要的科学价值和现实意义。

Arid central Asia is one of the regions most sensitive to global climate change, as well as the region with dramatically hydrological changes and fragile ecosystems. The region includes the main body of the ancient Silk Road, which played a key role in the cultural exchange and the rise and fall of Silk Road civilization. Scientific assessment of the risks faced by the sustainable development of human society in the arid central Asia under the background of global warming is a major scientific issue that has received much attention. The study of the relationship between cultural exchange, development of Silk Road civilization and climate change can provide a scientific basis for understanding the evolution rules of human-land relationship on different timescales in this area. This study summarized the research progress in the history of cultural exchanges, the rise and fall of Silk Road civilization, climate change during the Holocene, forcing mechanisms of climate and hydrological change on different timescales, as well as the process and rule of human-environment interaction. On this basis, we proposed that the study of the temporal and spatial patterns of Holocene climate change and the evolution of Silk Road civilization in arid central Asia, as well as the research on the interaction mechanisms between human and environment, are obviously insufficient. Solving the problems of regional imbalance of climate change and cultural evolution in arid central Asia and strengthening the cross-disciplinary study of geoscience and archaeology are effective ways to promote the study of climate change and changes of Silk Road civilization, which has important scientific and practical significance for understanding the evolution of human-land relations in the region, coping with the challenges of climate change, and serving the “One Belt, One Road” strategy.

中图分类号: 

图1 欧亚大陆同时出土东西方作物遗存史前遗址点的分布与丝绸之路
Fig. 1 Map of silk road, and distributions of prehistoric sites with both western and eastern crop remains in Eurasia
图2 全新世亚洲中部干旱区湿度和温度记录对比
Fig. 2 Comparison of moisture and temperature records in arid central Asia during the Holocene
1 Weiss H , Courty M A , Wetterstrom W , et al . The genesis and collapse of third millennium north Mesopotamian civilization[J]. Science, 1993, 261(5 124): 995-1 004.
2 Yancheva G , Nowaczyk N R , Mingram J , et al . Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7 123): 76-77.
3 Xu Jinghua . Sun, climate, hunger and mass migration[J]. Science in China (Series D),1998, 28(4): 366-384.
许靖华 . 太阳, 气候, 饥荒与民族大迁移[J]. 中国科学:D辑, 1998, 28(4): 366-384.
4 Kathayat G , Cheng H , Sinha A , et al . The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12): e1701296. DOI: 10.1126/sciadv.1701296 .
doi: 10.1126/sciadv.1701296    
5 Buckley B M , Anchukaitis K J , Penny D , et al . Climate as a contributing factor in the demise of Angkor, Cambodia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6 748-6 752.
6 Evans N P , Bauska T K , Gázquez-Sánchez F , et al . Quantification of drought during the collapse of the classic Maya civilization[J]. Science, 2018, 361(6 401): 498-501.
7 Binford M W , Kolata A L , Brenner M , et al . Climate variation and the rise and fall of an Andean civilization[J]. Quaternary research, 1997, 47(2): 235-248.
8 Chen F , Xu Q , Chen J , et al . East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Report, 2015, 5: 11 186. DOI: 10.1038/srep11186 .
doi: 10.1038/srep11186    
9 Drake B L . Changes in North Atlantic Oscillation drove Population migrations and the collapse of the Western Roman Empire[J]. Scientific Reports, 2017,7:1 227. DOI: 10.1038/s41598-017-01289-z .
doi: 10.1038/s41598-017-01289-z    
10 Bevan A , Colledge S , Fuller D , et al . Holocene fluctuations in human population demonstrate repeated links to food production and climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49): E10524-E10531.
11 Wu W , Zheng H , Hou M , et al . The 5.5 cal ka BP climate event, population growth, circumscription and the emergence of the earliest complex societies in China[J]. Science China Earth Sciences, 2018, 61(2): 134-148.
12 Mischke S , Liu C , Zhang J , et al . The world’s earliest Aral-Sea type disaster: The decline of the Loulan Kingdom in the Tarim Basin[J]. Scientific Reports, 2017, 7: 43 102. DOI: 10.1038/srep43102 .
doi: 10.1038/srep43102    
13 Chen F , Yu Z , Yang M , et al . Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
14 Chen Fahu , An Chengbang , Dong Guanghui , et al . Human activities, environmental changes, and rise and decline of silk road civilization in Pan-Third Pole region[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 967-975.
陈发虎, 安成邦, 董广辉, 等 . 丝绸之路与泛第三极地区人类活动、环境变化和丝路文明兴衰[J]. 中国科学院院刊, 2017, 32(9): 967-975.
15 Zhang H , Wu J W , Zheng Q , et al . A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China[J]. Journal of Arid Environments, 2003, 55(3): 545-553.
16 Wu Jinglu , Ma Long , Ji Lili . Lake surface change of the Aral Sea and its environmental effects in the arid region of the Central Asia[J]. Arid Land Geography, 2009, 32(3): 418-422.
吴敬禄, 马龙, 吉力力 . 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理, 2009, 32(3): 418-422.
17 Frankopan P . The Silk Roads: A New History of the World[M]. London: Bloomsbury Publishing, 2015.
18 Dong G , Yang Y , Han J , et al . Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption[J]. Science China Earth Sciences, 2017, 60(6): 1 110-1 123.
19 Frachetti M D , Smith C E , Traub C M . Nomadic ecology shaped the highland geography of Asia’s Silk Roads[J]. Nature, 2017, 543(7 644): 193-198.
20 Allentoft M E , Sikora M , Sj?gren K G , et al . Population genomics of Bronze Age Eurasia[J]. Nature, 2015, 522(7 555):167-172.
21 Chen F , Dong G , Zhang D , et al . Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP[J]. Science, 2015, 347(6 219): 248-250.
22 Rosenberg D . Early maceheads in the southern Levant: A “Chalcolithic” hallmark in Neolithic context [J]. Journal of Field Archaeology, 2010, 35(2): 204-216.
23 Roberts B W , Thornton C P , Pigott V C . Development of metallurgy in Eurasia[J]. Antiquity, 2009, 83 (322): 1 012-1 022.
24 Han Jianye . “Painted-Pottery road” and early eastern and western cultural contract[J]. Archaeology and Cultural Relics, 2013, (1): 28-37.
韩建业 . “彩陶之路”与早期中西文化交流[J]. 考古与文物, 2013, (1): 28-37.
25 Wertime T A . The beginnings of metallurgy: A new look: Arguments over diffusion and independent invention ignore the complex metallurgic crafts leading to iron[J]. Science, 1973, 182(4 115): 875-887.
26 De Ryck I , Adriaens A , Adams F . An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC[J]. Journal of Cultural Heritage, 2005, 6(3): 261-268.
27 Chernykh E N . Ancient Metallurgy in the USSR: The Early Metal Age[M]. Cambridge: Cambridge University Press, 1992: 98-215.
28 Linduff K M , Mei J J . Metallurgy in Ancient Eastern Asia: Retrospect and Prospects[J]. Journal of World Prehistory, 2009, 22(3): 265-281.
29 Li Shuicheng . Westward Spread of Eastern: The Process of Prehistoric Cultural in Northwestern of China[M]. Beijing: Cultural Relics Press, 2009.
李水城 . 东风西渐: 中国西北史前文化之进程[M]. 北京: 文物出版社, 2009.
30 Gansu Provincial Institute of Cultural Relics . Daliwan Site in Qin’an City: Excavation Report[M]. Beijing: Cultural Relics Press, 2006: 30-47.
甘肃省文物考古研究所 . 秦安大地湾: 新石器时代遗址发掘报告[M]. 北京: 文物出版社, 2006: 30-47.
31 McNeill J R , McNeill W H . The Human Web: A Bird's-eye View of World History[M]. New York: WW Norton & Company, 2003.
32 Kuz?mina E E , Mari V H . The Prehistory of the Silk Road[M]. Philadelphia: University of Pennsylvania Press, 2008.
33 Anthony D W . The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World[M]. Princeton: Princeton University Press, 2010: 121-456.
34 Riehl S , Zeidi M , Conard N J . Emergence of agriculture in the foothills of the Zagros Mountains of Iran[J]. Science, 2013, 341(6 141): 65-67.
35 Zeder M A . Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11 597-11 604.
36 Zhao Z . New archaeobotanic data for the study of the origins of agriculture in China[J]. Current Anthropology, 2011, 52(Suppl.4): S295-S306.
37 Zuo X , Lu H , Jiang L , et al . Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6 486-6 491.
38 Liu X , Jones P J , Matuzeviciute G M , et al . From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory[J]. Quaternary Science Reviews, 2019, 206: 21-28.
39 Ren Lele , Dong Guanghui . The history for origin and diffusion of “Six livestock”[J]. Chinese Journal of Nature,2016,38(4): 257-262.
任乐乐, 董广辉 . “六畜” 的起源和传播历史[J]. 自然杂志, 2016, 38(4): 257-262.
40 Wang T , Wei D , Chang X , et al . Tianshanbeilu and the Isotopic Millet Road: Reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe [J]. National Science Review, 2017: nwx015. DOI: 10.1093/nsr/nwx015 .
doi: 10.1093/nsr/nwx015    
41 Long T , Leipe C , Jin G , et al . The early history of wheat in China from 14C dating and Bayesian chronological modelling[J]. Nature Plants, 2018, 4(5): 272-279.
42 Dong G . A new story for wheat into China[J]. Nature Plants, 2018, 4: 243-244.
43 Liu X , Lister D L , Zhao Z , et al . Correction: Journey to the east: Diverse routes and variable flowering times for wheat and barley en route to prehistoric China[J]. PloS ONE, 2018, 13(12): e0209518. DOI: 10.1371/journal.pone.0187405 .
doi: 10.1371/journal.pone.0187405    
44 Zeng X , Guo Y , Xu Q , et al . Origin and evolution of qingke barley in Tibet[J]. Nature Communications, 2018, 9(1): 5 433. DOI: 10.1038/s41467-018-07920-5 .
doi: 10.1038/s41467-018-07920-5    
45 Spengler R N , Frachetti M , Doumani P , et al . Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2014, 281(1 783): 2013382. DOI: 10.1098/rspb.2013.3382 .
doi: 10.1098/rspb.2013.3382    
46 Matuzeviciute G M , Staff R A , Hunt H V , et al . The early chronology of broomcorn millet (Panicum miliaceum) in Europe[J]. Antiquity, 2013, 87(338): 1 073-1 085.
47 Zhou Weizhou , Ding Jingtai . Dictionary of the Silk Road[M]. Xi’an: Shaanxi People's Publishing House, 2006.
周伟洲, 丁景泰 . 丝绸之路大辞典[M]. 西安: 陕西人民出版社, 2006.
48 Yong Jichun . History of the Silk Roads[M]. Xi’an: Sanqin Publishing House, 2015.
雍际春 .丝绸之路历史沿革[M]. 西安: 三秦出版社, 2015.
49 Chen F , Jia J , Chen J , et al . A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
50 Wang W , Feng Z . Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records[J]. Earth-Science Reviews, 2013, 122: 38-57.
51 Cheng H , Sp?tl C , Breitenbach S F M , et al . Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Reports, 2016, 6: 36 975.
52 Chen F , Chen X , Chen J , et al . Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, southwest China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
53 Chen F , Chen J , Holmes J , et al . Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29: 1 055-1 068.
54 Chen J , Chen F , Feng S , et al . Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
55 Chen F , Huang W , Jin L , et al . Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Science, 2011, 54(12): 1 812-1 821.
56 Huang W , Chen J H , Zhang X J , et al . Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period[J]. Science China Earth Sciences, 2015, 58(5): 676-684.
57 Chen F , Chen J , Huang W , et al . Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
58 Liu X , Rao Z , Shen C , et al . Holocene solar activity imprint on centennial-to multidecadal-scale hydroclimate oscillations in arid central Asia[J]. Journal of Geophysical Research: Atmospheres,2019, 124(5): 2 562-2 573.
59 Carolin S A , Walker R T , Day C C , et al . Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 116(1): 67-72.
60 Chen J , Liu J , Zhang X , et al . Unstable Little Ice Age climate revealed by high-resolution proxy records from northwestern China[J]. Climate Dynamics, 2019. DOI: 10.1007/s00382-019-04685-5 .
doi: 10.1007/s00382-019-04685-5    
61 Zhao J , An C , Huang Y , et al . Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23.
62 Huang X , Chen C , Jia W , et al . Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48.
63 Rao Z , Huang C , Xie L , et al . Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
64 Berger A, Loutre M F, Insolation values for the climate of the last 10 million years[J]. Quaternary Science Review, 1991, 10: 297-317.
65 Jin L Y , Chen F H , Morrill C , et al . Causes of early Holocene desertification in arid central Asia[J]. Climatic Dynamics, 2012, 38(7/8): 1 577-1 591.
66 Carlson A E , Clark P U . Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[J]. Reviews of Geophysics, 2012, 50(4): RG4007. DOI: 10.1029/2011RG000371 .
doi: 10.1029/2011RG000371    
67 Enomoto T , Hoskins B J , Matsuda Y . The formation mechanism of the Bonin high in August[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(587): 157-178.
68 Ding Q , Wang B . Circumglobal teleconnection in the Northern Hemisphere summer[J]. Journal of Climate, 2005, 18(17): 3 483-3 505.
69 Chen G S , Huang R H . Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China[J]. Journal of Climate, 2012, 25(22): 7 834-7 851.
70 Huang W , Feng S , Chen J , et al . Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. Journal of Climate, 2015, 28(9): 3 579-35 91.
71 Svendsen L , Hetzinger S , Keenlyside N , et al . Marine‐based multiproxy reconstruction of Atlantic multidecadal variability[J]. Geophysical Research Letters, 2014, 41(4): 1 295-1 300.
72 Mantua N J , Hare S R , Zhang Y , et al . A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 080.
73 Drinkwater K F , Martin M , Iselin M , et al . The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N[J]. Journal of Marine Systems, 2014, 133: 117-130. DOI: 10.1016/j.jmarsys.2013.11.001
doi: 10.1016/j.jmarsys.2013.11.001    
74 Yu L , Furevik T , Otter? O H , et al . Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-yrs control run of Bergen Climate Model[J]. Climate Dynamics, 2015, 44(1/2): 475-494.
75 Luo F , Li S , Gao Y , et al . The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon since the Industrial Revolution is intrinsic to the climate system[J]. Environmental Research Letter,2018,13(9): 094020. DOI: 10.1088/1748-9326/aade11 .
doi: 10.1088/1748-9326/aade11    
76 Goswami B N , Madhusoodanan M S , Neema C P , et al . A physical mechanism for North Atlantic SST influence on the Indian summer monsoon[J]. Geophysical Research Letters, 2006, 33(2): L02706. DOI: 10.1029/2005GL024803 .
doi: 10.1029/2005GL024803    
77 Dai Xingang , Wang Ping , Zhang Kaijing . A study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 years[J]. Acta Physica Sinica, 2013, 62(12): 1-11.
戴新刚, 汪萍, 张凯静 . 近 60 年新疆降水趋势与波动机制分析[J]. 物理学报, 2013, 62(12): 1-11.
78 Huang W , Chen F H , Feng S , et al . Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(32): 3 962-3 968.
79 Feng S , Hu Q . Variations in the teleconnection of ENSO and summer rainfall in northern China: A role of the Indian summer monsoon[J]. Journal of Climate, 2004, 17(24): 4 871-4 881.
80 Feng S , Hu Q . How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia[J]. Geophysical Research Letters, 2008, 35(1): L01707. DOI: 10.1029/2007GL032484 .
doi: 10.1029/2007GL032484    
81 Wei W , Zhang R , Wen M , et al . Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China[J]. Climate Dynamics, 2014, 43(5/6): 1 257-1 269.
82 Zhang X , Jin L . Association of the Northern Hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation[J]. The Holocene, 2016, 26(2): 290-301.
83 Huang W , Chang S Q , Xie C L , et al . Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation[J]. Advances in Climate Change Research, 2017, 8(1): 12-17.
84 Gao Y , Sun J , Li F , et al . Arctic sea ice and Eurasian climate: A review[J]. Advances in Atmospheric Sciences, 2015, 32(1): 92-114.
85 Miles M W , Divine D V , Furevik T , et al . A signal of persistent Atlantic multidecadal variability in Arctic sea ice[J]. Geophysical Research Letters, 2014, 41(2): 463-469.
86 Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4 570-4 575.
87 Johannessen O M , Kuzmina S , Bobylev L P , et al . Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization[J]. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 28 234. DOI: 10.3402/tellusa.v68.28234 .
doi: 10.3402/tellusa.v68.28234    
88 Svendsen L , Keenlyside N , Bethke I , et al . Pacific contribution to the early twentieth-century warming in the Arctic[J]. Nature Climate Change, 2018, 8(9): 793-797.
89 Tokinaga H , Xie S P , Mukougawa H . Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6 227-6 232.
90 Li F , Orsolini Y , Wang H , et al . Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline[J]. Geophysical Research Letters, 2018, 45(5): 2 497-2 506.
91 Screen J A , Francis J A . Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856-860.
92 Jia X , Dong G , Li H , et al . The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China[J]. The Holocene, 2013, 23(1): 85-92.
93 Dong G , Jia X , An C , et al . Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30.
94 Dong G , Wang L , Cui Y , et al . The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai Provinces, northwest China[J]. Quaternary International, 2013, 316: 155-161.
95 Cullen H M , deMenocal P B , Hemming S , et al . Climate change and the collapse of the Akkadian empire: Evidence from the deep sea[J]. Geology, 2000, 28(4): 379-382.
96 Staubwasser M , Sirocko F , Grootes P M , et al . Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8): 1 425. DOI: 10.1029/2002GL016822 .
doi: 10.1029/2002GL016822    
97 Dodson J R , Li X , Zhou X , et al . Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72: 108-111.
98 Dong G . Understanding past human-environment interaction from an interdisciplinary perspective[J]. Science Bulletin, 2018, 63(16): 1 023-1 024.
99 Dong G , Ren L , Jia X , et al . Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau[J]. Quaternary International, 2016, 426: 42-49.
100 Yang Y , Dong G , Zhang S , et al . Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China[J]. The Holocene, 2017, 27(2): 282-291.
101 Zhang S , Yang Y , Storozum M J , et al . Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi corridor, Northwest China[J]. Catena, 2017, 156: 92-101.
102 Huang X , Liu S , Dong G , et al . Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene[J]. Progress in Physical Geography, 2017, 41(3): 286-301.
103 Shen H , Zhou X , Zhao K , et al . Wood types and human impact between 4300 and 2400 yr BP in the Hexi Corridor, NW China, inferred from charcoal records[J]. The Holocene, 2018, 28(4): 629-639.
104 Tan Jingze , Li Liming , Zhang Jianbo , et al . Craniometrical evidence for population admixture between Eastern and Western Eurasians in Bronze Age southwest Xinjiang[J]. Chinese Science Bulletin, 2013, 58(3): 299-306.
谭婧泽, 李黎明, 张建波, 等 . 新疆西南部青铜时代欧亚东西方人群混合的颅骨测量学证据[J]. 科学通报, 2012, 57(28): 2 666-2 673.
105 Shao Huiqiu . The Development of the Pre-historic Cultures in Xinjiang and the Interaction with Neighbor Cultures[M]. Beijing: Science Press, 2010.
邵会秋 . 新疆史前时期文化格局的演进及其与周邻文化的关系[M]. 北京: 科学出版社, 2010.
106 An Chengbang , Wang Wei , Duan Futao , et al . Environmental changes and cultural exchange between East and West along the Silk Road in arid Central Asia[J]. Acta Geographica Sinica, 2017, 72(5): 875-891.
安成邦, 王伟, 段阜涛, 等 . 亚洲中部干旱区丝绸之路沿线环境演化与东西方文化交流[J]. 地理学报, 2017, 72(5): 875-891.
107 Li H , Liu F , Cui Y , et al . Human settlement and its influencing factors during the historical period in an oasis-desert transition zone of Dunhuang, Hexi Corridor, northwest China[J]. Quaternary International, 2017, 458: 113-122.
108 Shi Z , Chen T , Storozum M J , et al . Environmental and social factors influencing the spatiotemporal variation of archaeological sites during the historical period in the Heihe River Basin, northwest China[J]. Quaternary International,2019, in press. DOI: 10.1016/j.quaint.2018.12.016 .
doi: 10.1016/j.quaint.2018.12.016    
109 Qin X , Liu J , Jia H , et al . New evidence of agricultural activity and environmental change associated with the ancient Loulan kingdom, China, around 1500 years ago[J]. The Holocene, 2012, 22(1): 53-61.
110 Cai Y , Chiang J C H , Breitenbach S F M , et al . Holocene moisture changes in western China, Central Asia, inferred from stalagmites[J]. Quaternary Science Reviews, 2017, 158: 15-28.
111 Owczarek P , Opa?a-Owczarek M , Rahmonov O , et al . Relationships between loess and the Silk Road reflected by environmental change and its implications for human societies in the area of ancient Panjikent, Central Asia[J]. Quaternary Research, 2018, 89(3): 691-701.
112 Zhang D D , Pei Q , Lee H F , et al . The pulse of imperial C hina: A quantitative analysis of long-term geopolitical and climatic cycles[J]. Global Ecology and Biogeography, 2015, 24(1): 87-96.
113 Hellenthal G , Busby G B J , Band G , et al . A genetic atlas of human admixture history[J]. Science, 2014, 343(6 172): 747-751.
114 Pederson N , Hessl A E , Baatarbileg N , et al . Pluvials, droughts, the Mongol Empire, and modern Mongolia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4 375-4 379.
115 Schmid B V , Büntgen U , Easterday W R , et al . Climate-driven introduction of the Black Death and successive plague reintroductions into Europe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 3 020-3 025.
116 Chen F , Wang J , Jin L , et al . Rapid warming in mid-latitude central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009, 3(1): 42. DOI: 10.1007/s11707-009-0013-9 .
doi: 10.1007/s11707-009-0013-9    
117 Brohan P , Kennedy J J , Harris I , et al . Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12): D12106. DOI: 10.1029/2005JD00 6548 .
doi: 10.1029/2005JD00 6548    
118 Han Delin . Artificial Oasis in Xinjiang[M].Beijing: China Environmental Science Press, 2000.
韩德林 . 新疆人工绿洲[M]. 北京: 中国环境科学出版社, 2000.
119 Micklin P P . Desiccation of the Aral Sea: A water management disaster in the Soviet Union[J]. Science, 1988, 241(4 870): 1 170-1 176.
120 Mirzabaev A , Goedecke J , Dubovyk O , et al . Economics of Land Degradation in Central Asia[M]. Berlin: Springer, 2016: 261-290.
[1] 王建事, 王成新, 任婉侠, 赵彦志, 薛冰. 地理学视角下“双碳”研究:主题、成效及展望[J]. 地球科学进展, 2023, 38(7): 757-768.
[2] 魏伟, 张轲, 周婕. 三江源地区人地关系研究综述及展望:基于“人、事、时、空”视角[J]. 地球科学进展, 2020, 35(1): 26-37.
[3] 郑度,姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.
[4] 曹光杰;王建. 长江三角洲全新世环境演变与人地关系研究综述[J]. 地球科学进展, 2005, 20(7): 757-764.
[5] 张雷;刘慧;陈文言. 国家资源环境安全的要素综合评价[J]. 地球科学进展, 2004, 19(2): 283-288.
[6] 赵生才. 社会信息化与人地关系———香山科学会议第 169次学术讨论会观点摘要[J]. 地球科学进展, 2002, 17(4): 624-627.
[7] 刘启明, 王世杰, 欧阳自远. 高分辨率气候环境变化研究中的石笋微层[J]. 地球科学进展, 2002, 17(3): 396-401.
[8] 郑度,陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展, 2001, 16(5): 599-606.
[9] 王爱民,缪磊磊. 地理学人地关系研究的理论评述[J]. 地球科学进展, 2000, 15(4): 415-420.
阅读次数
全文


摘要