1 |
Weiss H , Courty M A , Wetterstrom W , et al . The genesis and collapse of third millennium north Mesopotamian civilization[J]. Science, 1993, 261(5 124): 995-1 004.
|
2 |
Yancheva G , Nowaczyk N R , Mingram J , et al . Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7 123): 76-77.
|
3 |
Xu Jinghua . Sun, climate, hunger and mass migration[J]. Science in China (Series D),1998, 28(4): 366-384.
|
|
许靖华 . 太阳, 气候, 饥荒与民族大迁移[J]. 中国科学:D辑, 1998, 28(4): 366-384.
|
4 |
Kathayat G , Cheng H , Sinha A , et al . The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12): e1701296. DOI: 10.1126/sciadv.1701296 .
doi: 10.1126/sciadv.1701296
|
5 |
Buckley B M , Anchukaitis K J , Penny D , et al . Climate as a contributing factor in the demise of Angkor, Cambodia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6 748-6 752.
|
6 |
Evans N P , Bauska T K , Gázquez-Sánchez F , et al . Quantification of drought during the collapse of the classic Maya civilization[J]. Science, 2018, 361(6 401): 498-501.
|
7 |
Binford M W , Kolata A L , Brenner M , et al . Climate variation and the rise and fall of an Andean civilization[J]. Quaternary research, 1997, 47(2): 235-248.
|
8 |
Chen F , Xu Q , Chen J , et al . East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Report, 2015, 5: 11 186. DOI: 10.1038/srep11186 .
doi: 10.1038/srep11186
|
9 |
Drake B L . Changes in North Atlantic Oscillation drove Population migrations and the collapse of the Western Roman Empire[J]. Scientific Reports, 2017,7:1 227. DOI: 10.1038/s41598-017-01289-z .
doi: 10.1038/s41598-017-01289-z
|
10 |
Bevan A , Colledge S , Fuller D , et al . Holocene fluctuations in human population demonstrate repeated links to food production and climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49): E10524-E10531.
|
11 |
Wu W , Zheng H , Hou M , et al . The 5.5 cal ka BP climate event, population growth, circumscription and the emergence of the earliest complex societies in China[J]. Science China Earth Sciences, 2018, 61(2): 134-148.
|
12 |
Mischke S , Liu C , Zhang J , et al . The world’s earliest Aral-Sea type disaster: The decline of the Loulan Kingdom in the Tarim Basin[J]. Scientific Reports, 2017, 7: 43 102. DOI: 10.1038/srep43102 .
doi: 10.1038/srep43102
|
13 |
Chen F , Yu Z , Yang M , et al . Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
|
14 |
Chen Fahu , An Chengbang , Dong Guanghui , et al . Human activities, environmental changes, and rise and decline of silk road civilization in Pan-Third Pole region[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 967-975.
|
|
陈发虎, 安成邦, 董广辉, 等 . 丝绸之路与泛第三极地区人类活动、环境变化和丝路文明兴衰[J]. 中国科学院院刊, 2017, 32(9): 967-975.
|
15 |
Zhang H , Wu J W , Zheng Q , et al . A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China[J]. Journal of Arid Environments, 2003, 55(3): 545-553.
|
16 |
Wu Jinglu , Ma Long , Ji Lili . Lake surface change of the Aral Sea and its environmental effects in the arid region of the Central Asia[J]. Arid Land Geography, 2009, 32(3): 418-422.
|
|
吴敬禄, 马龙, 吉力力 . 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理, 2009, 32(3): 418-422.
|
17 |
Frankopan P . The Silk Roads: A New History of the World[M]. London: Bloomsbury Publishing, 2015.
|
18 |
Dong G , Yang Y , Han J , et al . Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption[J]. Science China Earth Sciences, 2017, 60(6): 1 110-1 123.
|
19 |
Frachetti M D , Smith C E , Traub C M . Nomadic ecology shaped the highland geography of Asia’s Silk Roads[J]. Nature, 2017, 543(7 644): 193-198.
|
20 |
Allentoft M E , Sikora M , Sj?gren K G , et al . Population genomics of Bronze Age Eurasia[J]. Nature, 2015, 522(7 555):167-172.
|
21 |
Chen F , Dong G , Zhang D , et al . Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP[J]. Science, 2015, 347(6 219): 248-250.
|
22 |
Rosenberg D . Early maceheads in the southern Levant: A “Chalcolithic” hallmark in Neolithic context [J]. Journal of Field Archaeology, 2010, 35(2): 204-216.
|
23 |
Roberts B W , Thornton C P , Pigott V C . Development of metallurgy in Eurasia[J]. Antiquity, 2009, 83 (322): 1 012-1 022.
|
24 |
Han Jianye . “Painted-Pottery road” and early eastern and western cultural contract[J]. Archaeology and Cultural Relics, 2013, (1): 28-37.
|
|
韩建业 . “彩陶之路”与早期中西文化交流[J]. 考古与文物, 2013, (1): 28-37.
|
25 |
Wertime T A . The beginnings of metallurgy: A new look: Arguments over diffusion and independent invention ignore the complex metallurgic crafts leading to iron[J]. Science, 1973, 182(4 115): 875-887.
|
26 |
De Ryck I , Adriaens A , Adams F . An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC[J]. Journal of Cultural Heritage, 2005, 6(3): 261-268.
|
27 |
Chernykh E N . Ancient Metallurgy in the USSR: The Early Metal Age[M]. Cambridge: Cambridge University Press, 1992: 98-215.
|
28 |
Linduff K M , Mei J J . Metallurgy in Ancient Eastern Asia: Retrospect and Prospects[J]. Journal of World Prehistory, 2009, 22(3): 265-281.
|
29 |
Li Shuicheng . Westward Spread of Eastern: The Process of Prehistoric Cultural in Northwestern of China[M]. Beijing: Cultural Relics Press, 2009.
|
|
李水城 . 东风西渐: 中国西北史前文化之进程[M]. 北京: 文物出版社, 2009.
|
30 |
Gansu Provincial Institute of Cultural Relics . Daliwan Site in Qin’an City: Excavation Report[M]. Beijing: Cultural Relics Press, 2006: 30-47.
|
|
甘肃省文物考古研究所 . 秦安大地湾: 新石器时代遗址发掘报告[M]. 北京: 文物出版社, 2006: 30-47.
|
31 |
McNeill J R , McNeill W H . The Human Web: A Bird's-eye View of World History[M]. New York: WW Norton & Company, 2003.
|
32 |
Kuz?mina E E , Mari V H . The Prehistory of the Silk Road[M]. Philadelphia: University of Pennsylvania Press, 2008.
|
33 |
Anthony D W . The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World[M]. Princeton: Princeton University Press, 2010: 121-456.
|
34 |
Riehl S , Zeidi M , Conard N J . Emergence of agriculture in the foothills of the Zagros Mountains of Iran[J]. Science, 2013, 341(6 141): 65-67.
|
35 |
Zeder M A . Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11 597-11 604.
|
36 |
Zhao Z . New archaeobotanic data for the study of the origins of agriculture in China[J]. Current Anthropology, 2011, 52(Suppl.4): S295-S306.
|
37 |
Zuo X , Lu H , Jiang L , et al . Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6 486-6 491.
|
38 |
Liu X , Jones P J , Matuzeviciute G M , et al . From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory[J]. Quaternary Science Reviews, 2019, 206: 21-28.
|
39 |
Ren Lele , Dong Guanghui . The history for origin and diffusion of “Six livestock”[J]. Chinese Journal of Nature,2016,38(4): 257-262.
|
|
任乐乐, 董广辉 . “六畜” 的起源和传播历史[J]. 自然杂志, 2016, 38(4): 257-262.
|
40 |
Wang T , Wei D , Chang X , et al . Tianshanbeilu and the Isotopic Millet Road: Reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe [J]. National Science Review, 2017: nwx015. DOI: 10.1093/nsr/nwx015 .
doi: 10.1093/nsr/nwx015
|
41 |
Long T , Leipe C , Jin G , et al . The early history of wheat in China from 14C dating and Bayesian chronological modelling[J]. Nature Plants, 2018, 4(5): 272-279.
|
42 |
Dong G . A new story for wheat into China[J]. Nature Plants, 2018, 4: 243-244.
|
43 |
Liu X , Lister D L , Zhao Z , et al . Correction: Journey to the east: Diverse routes and variable flowering times for wheat and barley en route to prehistoric China[J]. PloS ONE, 2018, 13(12): e0209518. DOI: 10.1371/journal.pone.0187405 .
doi: 10.1371/journal.pone.0187405
|
44 |
Zeng X , Guo Y , Xu Q , et al . Origin and evolution of qingke barley in Tibet[J]. Nature Communications, 2018, 9(1): 5 433. DOI: 10.1038/s41467-018-07920-5 .
doi: 10.1038/s41467-018-07920-5
|
45 |
Spengler R N , Frachetti M , Doumani P , et al . Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2014, 281(1 783): 2013382. DOI: 10.1098/rspb.2013.3382 .
doi: 10.1098/rspb.2013.3382
|
46 |
Matuzeviciute G M , Staff R A , Hunt H V , et al . The early chronology of broomcorn millet (Panicum miliaceum) in Europe[J]. Antiquity, 2013, 87(338): 1 073-1 085.
|
47 |
Zhou Weizhou , Ding Jingtai . Dictionary of the Silk Road[M]. Xi’an: Shaanxi People's Publishing House, 2006.
|
|
周伟洲, 丁景泰 . 丝绸之路大辞典[M]. 西安: 陕西人民出版社, 2006.
|
48 |
Yong Jichun . History of the Silk Roads[M]. Xi’an: Sanqin Publishing House, 2015.
|
|
雍际春 .丝绸之路历史沿革[M]. 西安: 三秦出版社, 2015.
|
49 |
Chen F , Jia J , Chen J , et al . A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
|
50 |
Wang W , Feng Z . Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records[J]. Earth-Science Reviews, 2013, 122: 38-57.
|
51 |
Cheng H , Sp?tl C , Breitenbach S F M , et al . Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Reports, 2016, 6: 36 975.
|
52 |
Chen F , Chen X , Chen J , et al . Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, southwest China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
|
53 |
Chen F , Chen J , Holmes J , et al . Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29: 1 055-1 068.
|
54 |
Chen J , Chen F , Feng S , et al . Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
|
55 |
Chen F , Huang W , Jin L , et al . Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Science, 2011, 54(12): 1 812-1 821.
|
56 |
Huang W , Chen J H , Zhang X J , et al . Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period[J]. Science China Earth Sciences, 2015, 58(5): 676-684.
|
57 |
Chen F , Chen J , Huang W , et al . Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
|
58 |
Liu X , Rao Z , Shen C , et al . Holocene solar activity imprint on centennial-to multidecadal-scale hydroclimate oscillations in arid central Asia[J]. Journal of Geophysical Research: Atmospheres,2019, 124(5): 2 562-2 573.
|
59 |
Carolin S A , Walker R T , Day C C , et al . Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 116(1): 67-72.
|
60 |
Chen J , Liu J , Zhang X , et al . Unstable Little Ice Age climate revealed by high-resolution proxy records from northwestern China[J]. Climate Dynamics, 2019. DOI: 10.1007/s00382-019-04685-5 .
doi: 10.1007/s00382-019-04685-5
|
61 |
Zhao J , An C , Huang Y , et al . Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23.
|
62 |
Huang X , Chen C , Jia W , et al . Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48.
|
63 |
Rao Z , Huang C , Xie L , et al . Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
|
64 |
Berger A, Loutre M F, Insolation values for the climate of the last 10 million years[J]. Quaternary Science Review, 1991, 10: 297-317.
|
65 |
Jin L Y , Chen F H , Morrill C , et al . Causes of early Holocene desertification in arid central Asia[J]. Climatic Dynamics, 2012, 38(7/8): 1 577-1 591.
|
66 |
Carlson A E , Clark P U . Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[J]. Reviews of Geophysics, 2012, 50(4): RG4007. DOI: 10.1029/2011RG000371 .
doi: 10.1029/2011RG000371
|
67 |
Enomoto T , Hoskins B J , Matsuda Y . The formation mechanism of the Bonin high in August[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(587): 157-178.
|
68 |
Ding Q , Wang B . Circumglobal teleconnection in the Northern Hemisphere summer[J]. Journal of Climate, 2005, 18(17): 3 483-3 505.
|
69 |
Chen G S , Huang R H . Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China[J]. Journal of Climate, 2012, 25(22): 7 834-7 851.
|
70 |
Huang W , Feng S , Chen J , et al . Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. Journal of Climate, 2015, 28(9): 3 579-35 91.
|
71 |
Svendsen L , Hetzinger S , Keenlyside N , et al . Marine‐based multiproxy reconstruction of Atlantic multidecadal variability[J]. Geophysical Research Letters, 2014, 41(4): 1 295-1 300.
|
72 |
Mantua N J , Hare S R , Zhang Y , et al . A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 080.
|
73 |
Drinkwater K F , Martin M , Iselin M , et al . The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N[J]. Journal of Marine Systems, 2014, 133: 117-130. DOI: 10.1016/j.jmarsys.2013.11.001
doi: 10.1016/j.jmarsys.2013.11.001
|
74 |
Yu L , Furevik T , Otter? O H , et al . Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-yrs control run of Bergen Climate Model[J]. Climate Dynamics, 2015, 44(1/2): 475-494.
|
75 |
Luo F , Li S , Gao Y , et al . The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon since the Industrial Revolution is intrinsic to the climate system[J]. Environmental Research Letter,2018,13(9): 094020. DOI: 10.1088/1748-9326/aade11 .
doi: 10.1088/1748-9326/aade11
|
76 |
Goswami B N , Madhusoodanan M S , Neema C P , et al . A physical mechanism for North Atlantic SST influence on the Indian summer monsoon[J]. Geophysical Research Letters, 2006, 33(2): L02706. DOI: 10.1029/2005GL024803 .
doi: 10.1029/2005GL024803
|
77 |
Dai Xingang , Wang Ping , Zhang Kaijing . A study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 years[J]. Acta Physica Sinica, 2013, 62(12): 1-11.
|
|
戴新刚, 汪萍, 张凯静 . 近 60 年新疆降水趋势与波动机制分析[J]. 物理学报, 2013, 62(12): 1-11.
|
78 |
Huang W , Chen F H , Feng S , et al . Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(32): 3 962-3 968.
|
79 |
Feng S , Hu Q . Variations in the teleconnection of ENSO and summer rainfall in northern China: A role of the Indian summer monsoon[J]. Journal of Climate, 2004, 17(24): 4 871-4 881.
|
80 |
Feng S , Hu Q . How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia[J]. Geophysical Research Letters, 2008, 35(1): L01707. DOI: 10.1029/2007GL032484 .
doi: 10.1029/2007GL032484
|
81 |
Wei W , Zhang R , Wen M , et al . Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China[J]. Climate Dynamics, 2014, 43(5/6): 1 257-1 269.
|
82 |
Zhang X , Jin L . Association of the Northern Hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation[J]. The Holocene, 2016, 26(2): 290-301.
|
83 |
Huang W , Chang S Q , Xie C L , et al . Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation[J]. Advances in Climate Change Research, 2017, 8(1): 12-17.
|
84 |
Gao Y , Sun J , Li F , et al . Arctic sea ice and Eurasian climate: A review[J]. Advances in Atmospheric Sciences, 2015, 32(1): 92-114.
|
85 |
Miles M W , Divine D V , Furevik T , et al . A signal of persistent Atlantic multidecadal variability in Arctic sea ice[J]. Geophysical Research Letters, 2014, 41(2): 463-469.
|
86 |
Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4 570-4 575.
|
87 |
Johannessen O M , Kuzmina S , Bobylev L P , et al . Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization[J]. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 28 234. DOI: 10.3402/tellusa.v68.28234 .
doi: 10.3402/tellusa.v68.28234
|
88 |
Svendsen L , Keenlyside N , Bethke I , et al . Pacific contribution to the early twentieth-century warming in the Arctic[J]. Nature Climate Change, 2018, 8(9): 793-797.
|
89 |
Tokinaga H , Xie S P , Mukougawa H . Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6 227-6 232.
|
90 |
Li F , Orsolini Y , Wang H , et al . Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline[J]. Geophysical Research Letters, 2018, 45(5): 2 497-2 506.
|
91 |
Screen J A , Francis J A . Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856-860.
|
92 |
Jia X , Dong G , Li H , et al . The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China[J]. The Holocene, 2013, 23(1): 85-92.
|
93 |
Dong G , Jia X , An C , et al . Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30.
|
94 |
Dong G , Wang L , Cui Y , et al . The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai Provinces, northwest China[J]. Quaternary International, 2013, 316: 155-161.
|
95 |
Cullen H M , deMenocal P B , Hemming S , et al . Climate change and the collapse of the Akkadian empire: Evidence from the deep sea[J]. Geology, 2000, 28(4): 379-382.
|
96 |
Staubwasser M , Sirocko F , Grootes P M , et al . Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8): 1 425. DOI: 10.1029/2002GL016822 .
doi: 10.1029/2002GL016822
|
97 |
Dodson J R , Li X , Zhou X , et al . Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72: 108-111.
|
98 |
Dong G . Understanding past human-environment interaction from an interdisciplinary perspective[J]. Science Bulletin, 2018, 63(16): 1 023-1 024.
|
99 |
Dong G , Ren L , Jia X , et al . Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau[J]. Quaternary International, 2016, 426: 42-49.
|
100 |
Yang Y , Dong G , Zhang S , et al . Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China[J]. The Holocene, 2017, 27(2): 282-291.
|
101 |
Zhang S , Yang Y , Storozum M J , et al . Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi corridor, Northwest China[J]. Catena, 2017, 156: 92-101.
|
102 |
Huang X , Liu S , Dong G , et al . Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene[J]. Progress in Physical Geography, 2017, 41(3): 286-301.
|
103 |
Shen H , Zhou X , Zhao K , et al . Wood types and human impact between 4300 and 2400 yr BP in the Hexi Corridor, NW China, inferred from charcoal records[J]. The Holocene, 2018, 28(4): 629-639.
|
104 |
Tan Jingze , Li Liming , Zhang Jianbo , et al . Craniometrical evidence for population admixture between Eastern and Western Eurasians in Bronze Age southwest Xinjiang[J]. Chinese Science Bulletin, 2013, 58(3): 299-306.
|
|
谭婧泽, 李黎明, 张建波, 等 . 新疆西南部青铜时代欧亚东西方人群混合的颅骨测量学证据[J]. 科学通报, 2012, 57(28): 2 666-2 673.
|
105 |
Shao Huiqiu . The Development of the Pre-historic Cultures in Xinjiang and the Interaction with Neighbor Cultures[M]. Beijing: Science Press, 2010.
|
|
邵会秋 . 新疆史前时期文化格局的演进及其与周邻文化的关系[M]. 北京: 科学出版社, 2010.
|
106 |
An Chengbang , Wang Wei , Duan Futao , et al . Environmental changes and cultural exchange between East and West along the Silk Road in arid Central Asia[J]. Acta Geographica Sinica, 2017, 72(5): 875-891.
|
|
安成邦, 王伟, 段阜涛, 等 . 亚洲中部干旱区丝绸之路沿线环境演化与东西方文化交流[J]. 地理学报, 2017, 72(5): 875-891.
|
107 |
Li H , Liu F , Cui Y , et al . Human settlement and its influencing factors during the historical period in an oasis-desert transition zone of Dunhuang, Hexi Corridor, northwest China[J]. Quaternary International, 2017, 458: 113-122.
|
108 |
Shi Z , Chen T , Storozum M J , et al . Environmental and social factors influencing the spatiotemporal variation of archaeological sites during the historical period in the Heihe River Basin, northwest China[J]. Quaternary International,2019, in press. DOI: 10.1016/j.quaint.2018.12.016 .
doi: 10.1016/j.quaint.2018.12.016
|
109 |
Qin X , Liu J , Jia H , et al . New evidence of agricultural activity and environmental change associated with the ancient Loulan kingdom, China, around 1500 years ago[J]. The Holocene, 2012, 22(1): 53-61.
|
110 |
Cai Y , Chiang J C H , Breitenbach S F M , et al . Holocene moisture changes in western China, Central Asia, inferred from stalagmites[J]. Quaternary Science Reviews, 2017, 158: 15-28.
|
111 |
Owczarek P , Opa?a-Owczarek M , Rahmonov O , et al . Relationships between loess and the Silk Road reflected by environmental change and its implications for human societies in the area of ancient Panjikent, Central Asia[J]. Quaternary Research, 2018, 89(3): 691-701.
|
112 |
Zhang D D , Pei Q , Lee H F , et al . The pulse of imperial C hina: A quantitative analysis of long-term geopolitical and climatic cycles[J]. Global Ecology and Biogeography, 2015, 24(1): 87-96.
|
113 |
Hellenthal G , Busby G B J , Band G , et al . A genetic atlas of human admixture history[J]. Science, 2014, 343(6 172): 747-751.
|
114 |
Pederson N , Hessl A E , Baatarbileg N , et al . Pluvials, droughts, the Mongol Empire, and modern Mongolia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4 375-4 379.
|
115 |
Schmid B V , Büntgen U , Easterday W R , et al . Climate-driven introduction of the Black Death and successive plague reintroductions into Europe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 3 020-3 025.
|
116 |
Chen F , Wang J , Jin L , et al . Rapid warming in mid-latitude central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009, 3(1): 42. DOI: 10.1007/s11707-009-0013-9 .
doi: 10.1007/s11707-009-0013-9
|
117 |
Brohan P , Kennedy J J , Harris I , et al . Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12): D12106. DOI: 10.1029/2005JD00 6548 .
doi: 10.1029/2005JD00 6548
|
118 |
Han Delin . Artificial Oasis in Xinjiang[M].Beijing: China Environmental Science Press, 2000.
|
|
韩德林 . 新疆人工绿洲[M]. 北京: 中国环境科学出版社, 2000.
|
119 |
Micklin P P . Desiccation of the Aral Sea: A water management disaster in the Soviet Union[J]. Science, 1988, 241(4 870): 1 170-1 176.
|
120 |
Mirzabaev A , Goedecke J , Dubovyk O , et al . Economics of Land Degradation in Central Asia[M]. Berlin: Springer, 2016: 261-290.
|