Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (5): 451-458    DOI: 10.11867/j.issn.1001-8166.2006.05.0451
973项目研究进展     
青藏高原隆升及其环境效应
郑度1,姚檀栋2
1.中国科学院地理科学与资源研究所, 北京 100101;2.中国科学院青藏高原研究所, 北京 100085
Uplifting of Tibetan Plateau with Its Environmental Effects
Zheng Du1,Yao Tandong2
1.Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101,China;2. Institute of Tibetan Plateau, CAS, Beijing, 100085,China
 全文: PDF(98 KB)  
摘要:

“青藏高原形成演化及其环境资源效应”项目选择青藏高原为典型地区,特别注意高原与毗邻地区的联系,以从全球尺度探讨高原的各种过程,目标集中在大陆碰撞过程和高原隆升过程,以过程为主线贯通碰撞机制、环境变化和资源分布规律的研究;时间上着重新生代以来,在不同精细时间尺度上定量地描述碰撞和隆升的动态过程及环境变化。运用地球科学、生命科学、环境科学及各学科之间有机交叉、综合研究的方法,开展大陆碰撞动力学、环境变化、现代表生过程及各圈层相互作用等重大理论问题的研究,为青藏高原地区的资源开发和环境调控提供科学依据。按照统观全局、突出重点的原则,项目主要研究内容包括以下4个方面:大陆岩石圈碰撞过程及其成矿效应;高原隆升过程与东亚气候环境变化;青藏高原现代表生过程及相互作用机理;青藏高原区域系统相互作用的综合研究。在完成研究计划任务的基础上,项目取得如下的突出研究成果和创新性进展:印度大陆与欧亚大陆初始碰撞时限;青藏高原南北缘山盆岩石圈尺度的构造关系;青藏高原整合构造模型与成矿成藏评价;新生代高原北部重大的构造变形隆升事件序列;高原周边环境变化事件及高原隆升对亚洲季风发展变化的影响;高分辨率气候动态过程及变化趋势;高原主要生态系统碳过程对气候变化的响应;高原气候变化及冰冻圈变化与预测;高原土地覆被变化、恢复整治及管理。

关键词: 青藏高原大陆岩石圈碰撞与隆升过程气候环境变化现代表生过程    
Abstract:

    The plateau is an ideal natural laboratory for studies on the earth dynamics of lithosphere and the environmental change, with broad applying prospective for the regional sustainable development of the plateau. By taking Tibetan Plateau as a key area, the project has specially focused on linkages with surrounding regions and the globe. The project emphasizes the study of the process of continental collision and uplift process of the plateau, while the processes are considered as a key clue through the studies on collision mechanism, environmental changes and resource effects. The research is devoted to quantitatively depict the dynamic processes of tectonic collision and uplift and environmental changes at different time scales since the Cenozoic Era. By applying synthetic and interdisciplinary methods borrowed from earth sciences, life sciences, environmental science and their hybridized integration, the important theoretical issues such as continental collision dynamics, environmental changes, contemporary epigenetic processes and interactions between biosphere, hydrosphere, cryosphere and atmosphere have been studied, which has provided scientific bases for the resource exploitation and environment harnessing on the plateau.
    Since the implementation of the project in 1998, the project have been carried out many field excursions, during which field geological, geographical and ecological survey and sampling have been finished. Meanwhile, systematic long-term and temporary observation in the field and research, and laboratory analysis, testing, and identification of collected samples and specimens were carried out. The following achievements have been made: to find out the time limit of initial stage of collision between Indian and Eurasian continents; to explain the tectonic-geological relationship at a mountain- basin lithosphere scale in the northern and southern margin of the plateau; to put forward tectonic systems and to evaluate the mineralization belt and oil gas resources of the plateau; to establish a series of major tectonic-deformation and uplift events in the northern plateau during the Cenozoic Era; to reveal a high solution dynamic process and change tendency of climate; to elaborate the effects of the plateau uplifting on the evolution and changes of the Asian monsoon; to clarify absorption and release of the green-house gas of main ecosystem types on the plateau; to predict changes of cryosphere with climate changes on the plateau and to illustrate land-cover changes as well as the rehabilitation and management of the degraded land.

Key words: Tibetan Plateau    Continental lithosphere    Collision and uplifting process    Climatic and environmental changes    Contemporary epigenetic processes.
收稿日期: 2006-04-05 出版日期: 2006-05-15
:  X141  
基金资助:

国家重点基础研究发展计划项目“青藏高原形成演化及其环境资源效应”(编号:G1998040800)资助.

通讯作者: 郑度     E-mail: zhengd@igsnrr.ac.cn
作者简介: 郑度(1936-),男,广西揭西人,研究员,中国科学院院士,主要从事自然地理综合研究.E-mail:zhengd@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚檀栋
郑度

引用本文:

郑度,姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.

Zheng Du,Yao Tandong. Uplifting of Tibetan Plateau with Its Environmental Effects. Advances in Earth Science, 2006, 21(5): 451-458.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.05.0451        http://www.adearth.ac.cn/CN/Y2006/V21/I5/451

[1] Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its environmental effects[M]. Beijing: Science Press,2004:1-564.[郑度, 姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社,2004:1-564.]

[2] Ding Lin, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet[J]. Tectonics,2005,24:1-18,TC3001,doi:10.1029/2004TC001729.

[3] Wan X, Ding L. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance[J]. Acta Palaeontology Sinia, 2002,41:89-95.

[4] Gao R, Huang D D, Lu D Y, et al. Deep seismic reflection profile across the contact zone of the West Kunlun orogenic belt and the Tarim Basin[J]. Chinese Science Bulletin,2000,45:2 281-2 286.

[5] Rui Gao, Zhanwu Lu, Qiusheng Li, et al. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau[J]. Episodes,2005,28(4):263-273.

[6] Tan Handong, Wei Wenbo, Martyn Unsworth, et al. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang Plateau[J]. Chinese Journal of Geophysics,2004,47(4):685-690. [谭悍东,魏文博,Martyn Unsworth,. 西藏高原南部雅鲁藏布江缝合带地壳电性结构[J].地球物理学报, 2004,47(4):685-690.]

[7] Luo Z H, Xiao X C, Cao Y Q, et al. The Cenozoic mantle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau[J]. Science in China(Series D),2001,44(suppl.):10-17.

[8] Qu X M, Hou Z Q, Li Y G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau[J]. Lithos,2004,74:131-148.

[9] Pan B T, Burbank D W, Wang Y X, et al. A 900 ka record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology,2003, 31(11): 957-960.

[10] Fang X M, Yan M D, R Van der Voo, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin,2005,117:1 208-1 225.

[11] Song C H, Gao D L, Fang X M, et al. High-resolution magnetostratigraphy of late Cenozoic sediments from the Kunlun Shan Pass Basin and its implications on deformation and uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin,2005,50(17): 1 912-1 922.

[12] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposits in China[J]. Nature,2002, 416:159-163.

[13] Liu X D, Kutzbach J E, Liu Z, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon[J]. Geophysical Research Letters,2003,30(16):1839,doi:10.1029/2003GL017510.

[14] Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres,2003,108(D9):4 293-4 302.

[15] Shao Xuemei, Huang Lei, Liu Hongbin, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha[J].Science in China(Series D), 2004, 34(2): 145-153. [邵雪梅, 黄磊, 刘洪滨,. 树轮记录的青海德令哈地区千年降水变化[J].中国科学:D, 2004, 34(2): 145-153.]

[16] Zhu L P, Zhang P Z, Xia W L, et al. 1400-yrs cold/warm fluctuations reflected by environmental magnetism of a lake sediment core from the Chen Co, southern Tibet, China[J]. Journal of Paleolimnology, 2003,29(4):391-401.

[17] Yao Tandong, Xu Baiqing, Duan Keqin, et al. Temperature and methane records over the past 2ka in Dasuopu ice core from the Tibetan Plateau[J]. Science in China(Series D), 2002, 32(4): 346-352. [姚檀栋, 徐柏青, 段克勤,.青藏高原达索普冰芯2ka来温度与甲烷浓度变化记录[J].中国科学:D, 2002, 32(4): 346-352.]

[18] Cao G M, Tang Y H, Mo W H, et al. Grazing iintensity alters soil respiration in an alpine meadow on the Tibet plateau[J]. Soil Biology & Biochemistry,2004, 36: 237-243.

[19] Xu X L, Ouyang H, Cao G M, et al. Nitrogen deposition and carbon sequestration in alpine meadows[J]. Biogeochemistry,2004, 71: 353-369.

[20] Luo T X, Li W H, Zhu H Z. Estimated biomass and productivity of natural vegetation on the Tibet Plateau[J]. Ecological Applications, 2002, 12(4): 980-997.

[21] Zheng Du, Lin Zhenyao, Zhang Xueqin. Progress in studies of Tibetan plateau and global environmental change[J]. Earth Science Frontiers,2002,9(1):95-102.[郑度,林振耀,张雪芹.青藏高原与全球环境变化研究进展[J].地学前缘,2002,9(1):95-102.]

[22] Wang Ninglian, Ding Liangfu. Study on the Glacier Variation in Bujiagangri Section of the East Tanggula Range since the Little Ice Age[J]. Journal of Glaciolgy and Geocryology,2002,24(3):234-244. [王宁练,丁良福.唐古拉山东段布加岗日地区小冰期以来的冰川变化研究[J].冰川冻土, 2002, 24(3):234-244.]

[23] Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China(Series D), 2005,48(6):797-804.

[24] Zhang Yili, Li Xiubin, Fu Xiaofeng, et al. Urban land use change in Lhasa[J]. Acta Geographica sinica, 2000, 55(4):396-406.[张镱锂,李秀彬,傅小锋,. 拉萨城市用地变化分析[J].地理学报, 2000, 55(4):396-406.]

[25] Yan Jianzhong, Zhang Yili, Bai Wanqi, et al. Land cover changes based on plant successions: Deforestation, rehabilitation and degeneration of forest in the upper Dadu River watershed[J]. Science in China(Series D), 2005,48(12):2 214-2 230.

[26] Bao Weikai, Zhang Yili, Wang Qian, et al. Rehabilitation and degradation for subalpine coniferous forest on the upper reaches of Dadu River of Eastern Tibetan Plateau[J]. Journal of Mountain Research,2002,20(2):194-198. [包维楷,张镱锂,王乾,.大渡河上游林区森林资源的退化及其恢复与重建[J].山地学报,2002,20(2):194-198.]

:限于篇幅,参考文献仅列举本项目的部分研究成果。请参阅本项目的学术专著《青藏高原隆升与环境效应》及在各种刊物上发表的相关论文。

[1] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[2] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[3] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[4] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[5] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[6] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[7] 王雪梅,李 新,马明国,张志强. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 2012, 27(11): 1288-1294.
[8] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[9] 王澄海,吴永萍,崔 洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[10] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[11] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[12] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[13] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[14] 姚海涛,赵志中,王书兵,乔彦松,李朝柱,傅建利,王燕,蒋复初. 攀西地区晚新生代沉积研究回顾与问题讨论[J]. 地球科学进展, 2007, 22(5): 504-514.
[15] 梁四海,陈江,金晓媚,万力,龚斌. 近21年青藏高原植被覆盖变化规律[J]. 地球科学进展, 2007, 22(1): 33-40.