地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 451 -458. doi: 10.11867/j.issn.1001-8166.2006.05.0451

所属专题: 青藏高原研究——青藏科考虚拟专刊

973项目研究进展 上一篇    下一篇

青藏高原隆升及其环境效应
郑度 1,姚檀栋 2   
  1. 1.中国科学院地理科学与资源研究所, 北京 100101;2.中国科学院青藏高原研究所, 北京 100085
  • 收稿日期:2006-04-05 修回日期:2006-04-20 出版日期:2006-05-15
  • 通讯作者: 郑度 E-mail:zhengd@igsnrr.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“青藏高原形成演化及其环境资源效应”(编号:G1998040800)资助.

Uplifting of Tibetan Plateau with Its Environmental Effects

Zheng Du 1,Yao Tandong 2   

  1. 1.Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101,China;2. Institute of Tibetan Plateau, CAS, Beijing, 100085,China
  • Received:2006-04-05 Revised:2006-04-20 Online:2006-05-15 Published:2006-05-15

“青藏高原形成演化及其环境资源效应”项目选择青藏高原为典型地区,特别注意高原与毗邻地区的联系,以从全球尺度探讨高原的各种过程,目标集中在大陆碰撞过程和高原隆升过程,以过程为主线贯通碰撞机制、环境变化和资源分布规律的研究;时间上着重新生代以来,在不同精细时间尺度上定量地描述碰撞和隆升的动态过程及环境变化。运用地球科学、生命科学、环境科学及各学科之间有机交叉、综合研究的方法,开展大陆碰撞动力学、环境变化、现代表生过程及各圈层相互作用等重大理论问题的研究,为青藏高原地区的资源开发和环境调控提供科学依据。按照统观全局、突出重点的原则,项目主要研究内容包括以下4个方面:大陆岩石圈碰撞过程及其成矿效应;高原隆升过程与东亚气候环境变化;青藏高原现代表生过程及相互作用机理;青藏高原区域系统相互作用的综合研究。在完成研究计划任务的基础上,项目取得如下的突出研究成果和创新性进展:印度大陆与欧亚大陆初始碰撞时限;青藏高原南北缘山盆岩石圈尺度的构造关系;青藏高原整合构造模型与成矿成藏评价;新生代高原北部重大的构造变形隆升事件序列;高原周边环境变化事件及高原隆升对亚洲季风发展变化的影响;高分辨率气候动态过程及变化趋势;高原主要生态系统碳过程对气候变化的响应;高原气候变化及冰冻圈变化与预测;高原土地覆被变化、恢复整治及管理。

    The plateau is an ideal natural laboratory for studies on the earth dynamics of lithosphere and the environmental change, with broad applying prospective for the regional sustainable development of the plateau. By taking Tibetan Plateau as a key area, the project has specially focused on linkages with surrounding regions and the globe. The project emphasizes the study of the process of continental collision and uplift process of the plateau, while the processes are considered as a key clue through the studies on collision mechanism, environmental changes and resource effects. The research is devoted to quantitatively depict the dynamic processes of tectonic collision and uplift and environmental changes at different time scales since the Cenozoic Era. By applying synthetic and interdisciplinary methods borrowed from earth sciences, life sciences, environmental science and their hybridized integration, the important theoretical issues such as continental collision dynamics, environmental changes, contemporary epigenetic processes and interactions between biosphere, hydrosphere, cryosphere and atmosphere have been studied, which has provided scientific bases for the resource exploitation and environment harnessing on the plateau.
    Since the implementation of the project in 1998, the project have been carried out many field excursions, during which field geological, geographical and ecological survey and sampling have been finished. Meanwhile, systematic long-term and temporary observation in the field and research, and laboratory analysis, testing, and identification of collected samples and specimens were carried out. The following achievements have been made: to find out the time limit of initial stage of collision between Indian and Eurasian continents; to explain the tectonic-geological relationship at a mountain- basin lithosphere scale in the northern and southern margin of the plateau; to put forward tectonic systems and to evaluate the mineralization belt and oil gas resources of the plateau; to establish a series of major tectonic-deformation and uplift events in the northern plateau during the Cenozoic Era; to reveal a high solution dynamic process and change tendency of climate; to elaborate the effects of the plateau uplifting on the evolution and changes of the Asian monsoon; to clarify absorption and release of the green-house gas of main ecosystem types on the plateau; to predict changes of cryosphere with climate changes on the plateau and to illustrate land-cover changes as well as the rehabilitation and management of the degraded land.

中图分类号: 

[1] Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its environmental effects[M]. Beijing: Science Press,2004:1-564.[郑度, 姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社,2004:1-564.]

[2] Ding Lin, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet[J]. Tectonics,2005,24:1-18,TC3001,doi:10.1029/2004TC001729.

[3] Wan X, Ding L. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance[J]. Acta Palaeontology Sinia, 2002,41:89-95.

[4] Gao R, Huang D D, Lu D Y, et al. Deep seismic reflection profile across the contact zone of the West Kunlun orogenic belt and the Tarim Basin[J]. Chinese Science Bulletin,2000,45:2 281-2 286.

[5] Rui Gao, Zhanwu Lu, Qiusheng Li, et al. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau[J]. Episodes,2005,28(4):263-273.

[6] Tan Handong, Wei Wenbo, Martyn Unsworth, et al. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang Plateau[J]. Chinese Journal of Geophysics,2004,47(4):685-690. [谭悍东,魏文博,Martyn Unsworth,. 西藏高原南部雅鲁藏布江缝合带地壳电性结构[J].地球物理学报, 2004,47(4):685-690.]

[7] Luo Z H, Xiao X C, Cao Y Q, et al. The Cenozoic mantle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau[J]. Science in China(Series D),2001,44(suppl.):10-17.

[8] Qu X M, Hou Z Q, Li Y G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau[J]. Lithos,2004,74:131-148.

[9] Pan B T, Burbank D W, Wang Y X, et al. A 900 ka record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology,2003, 31(11): 957-960.

[10] Fang X M, Yan M D, R Van der Voo, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin,2005,117:1 208-1 225.

[11] Song C H, Gao D L, Fang X M, et al. High-resolution magnetostratigraphy of late Cenozoic sediments from the Kunlun Shan Pass Basin and its implications on deformation and uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin,2005,50(17): 1 912-1 922.

[12] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposits in China[J]. Nature,2002, 416:159-163.

[13] Liu X D, Kutzbach J E, Liu Z, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon[J]. Geophysical Research Letters,2003,30(16):1839,doi:10.1029/2003GL017510.

[14] Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres,2003,108(D9):4 293-4 302.

[15] Shao Xuemei, Huang Lei, Liu Hongbin, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha[J].Science in China(Series D), 2004, 34(2): 145-153. [邵雪梅, 黄磊, 刘洪滨,. 树轮记录的青海德令哈地区千年降水变化[J].中国科学:D, 2004, 34(2): 145-153.]

[16] Zhu L P, Zhang P Z, Xia W L, et al. 1400-yrs cold/warm fluctuations reflected by environmental magnetism of a lake sediment core from the Chen Co, southern Tibet, China[J]. Journal of Paleolimnology, 2003,29(4):391-401.

[17] Yao Tandong, Xu Baiqing, Duan Keqin, et al. Temperature and methane records over the past 2ka in Dasuopu ice core from the Tibetan Plateau[J]. Science in China(Series D), 2002, 32(4): 346-352. [姚檀栋, 徐柏青, 段克勤,.青藏高原达索普冰芯2ka来温度与甲烷浓度变化记录[J].中国科学:D, 2002, 32(4): 346-352.]

[18] Cao G M, Tang Y H, Mo W H, et al. Grazing iintensity alters soil respiration in an alpine meadow on the Tibet plateau[J]. Soil Biology & Biochemistry,2004, 36: 237-243.

[19] Xu X L, Ouyang H, Cao G M, et al. Nitrogen deposition and carbon sequestration in alpine meadows[J]. Biogeochemistry,2004, 71: 353-369.

[20] Luo T X, Li W H, Zhu H Z. Estimated biomass and productivity of natural vegetation on the Tibet Plateau[J]. Ecological Applications, 2002, 12(4): 980-997.

[21] Zheng Du, Lin Zhenyao, Zhang Xueqin. Progress in studies of Tibetan plateau and global environmental change[J]. Earth Science Frontiers,2002,9(1):95-102.[郑度,林振耀,张雪芹.青藏高原与全球环境变化研究进展[J].地学前缘,2002,9(1):95-102.]

[22] Wang Ninglian, Ding Liangfu. Study on the Glacier Variation in Bujiagangri Section of the East Tanggula Range since the Little Ice Age[J]. Journal of Glaciolgy and Geocryology,2002,24(3):234-244. [王宁练,丁良福.唐古拉山东段布加岗日地区小冰期以来的冰川变化研究[J].冰川冻土, 2002, 24(3):234-244.]

[23] Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China(Series D), 2005,48(6):797-804.

[24] Zhang Yili, Li Xiubin, Fu Xiaofeng, et al. Urban land use change in Lhasa[J]. Acta Geographica sinica, 2000, 55(4):396-406.[张镱锂,李秀彬,傅小锋,. 拉萨城市用地变化分析[J].地理学报, 2000, 55(4):396-406.]

[25] Yan Jianzhong, Zhang Yili, Bai Wanqi, et al. Land cover changes based on plant successions: Deforestation, rehabilitation and degeneration of forest in the upper Dadu River watershed[J]. Science in China(Series D), 2005,48(12):2 214-2 230.

[26] Bao Weikai, Zhang Yili, Wang Qian, et al. Rehabilitation and degradation for subalpine coniferous forest on the upper reaches of Dadu River of Eastern Tibetan Plateau[J]. Journal of Mountain Research,2002,20(2):194-198. [包维楷,张镱锂,王乾,.大渡河上游林区森林资源的退化及其恢复与重建[J].山地学报,2002,20(2):194-198.]

:限于篇幅,参考文献仅列举本项目的部分研究成果。请参阅本项目的学术专著《青藏高原隆升与环境效应》及在各种刊物上发表的相关论文。

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要