地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 459 -464. doi: 10.11867/j.issn.1001-8166.2006.05.0459

所属专题: 青藏高原研究——青藏科考虚拟专刊

973项目研究进展 上一篇    下一篇

青藏高原环境变化对全球变化的响应及其适应对策
姚檀栋 1,朱立平 2   
  1. 1.中国科学院青藏高原研究所,北京 100085;2.中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2006-04-21 修回日期:2006-04-29 出版日期:2006-05-15
  • 通讯作者: 姚檀栋 E-mail:zhengd@igsnrr.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“青藏高原形成演化及其环境资源效应”(编号:G1998040800)资助.

The Response of Environmental Changes on Tibetan Plateau to Global Changes and Adaptation Strategy

Yao Tandong 1,Zhu Liping 2   

  1. 1.Institute of Tibetan Plateau, Chinese Academy of Sciences, Beijing 100085,China;2.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China
  • Received:2006-04-21 Revised:2006-04-29 Online:2006-05-15 Published:2006-05-15

青藏高原的环境变化对全球变化具有敏感响应和强烈影响。青藏高原的现代环境与地表过程相互作用,引起包括冰冻圈和水资源以及生态系统等方面的一系列变化,对高原本身以及周边地区的人类生存环境和经济社会发展产生重大影响。作为国际研究的热点地区,青藏高原环境变化研究目前出现三个新的科学动向:关注关键地区的关键科学问题的系统研究;关注以现代地表过程为核心的监测研究;关注全球变化影响下的圈层相互作用研究。本项目的研究对青藏高原环境变化科学的发展、国际科学前沿的贡献以及服务于社会经济发展,都具有十分重要的意义。通过项目的研究将揭示青藏高原隆升到现代地貌与环境格局过程中所出现的重大构造事件和环境事件;重建不同区域、不同时间尺度的气候环境变化序列并揭示其时空分布特征;阐明青藏高原冰冻圈、湖泊和主要生态系统与土地覆被在不同气候条件下的变化特征;揭示青藏高原环境变化与地表过程对全球变化的响应特点和高原热力与动力过程对不同气候系统变化的影响。本项目将在高原南北典型区域利用地貌学与沉积学手段,研究青藏高原现代地貌与环境格局的形成过程;利用湖芯、冰芯、树木年轮等手段,研究青藏高原过去环境变化的特征事件、区域分异及其与全球变化的联系;利用冰川、冻土、积雪的时空变化,结合对高原特殊大气边界层的观测,研究青藏高原冰冻圈变化与能量水分循环过程;从冰川、湖泊、大气的监测入手,结合模式方法,研究青藏高原环境变化的机制;利用生态系统碳的源—汇变化,研究青藏高原生态系统对环境变化的响应;综合研究全球变化背景下青藏高原环境变化与水资源变化所产生的区域效应和适应对策。

The environmental changes of Tibetan Plateau possess sensitive response and strong effect to global changes. The interaction between modern environment and land surface processes on the plateau induces a series of variations in the cryosphere, water resources and ecological system, which produce important influence on the human living circumstance and economic-society development on the plateau itself and periphery regions. As a region focused by international scientific research, the plateau experienced three developing stages. The first is focusing the systemic studies of the key problems in the key areas, the second is focusing the monitoring studies centered with surface processes, and the third is focusing the interactions among different spheres influenced by global changes. This project possesses very important significance to the study of environmental changes on Tibetan Plateau and the contribution for international scientific frontier as well as local economics-society development. In this project, a series of objectives are planned to be achieved: discovering key tectonic and environmental events from the plateau's formation to its present landform structures; reconstructing climatic and environmental sequences with different time scales in different areas and clarifying their space-time features; elucidating the variation characteristics of cryosphere, lakes, dominant ecosystems and land covers under different climatic conditions on the plateau; revealing the responses of the environmental changes and land surface processes of the plateau to global changes, and the effects of the plateau's thermo and dynamical processes to different climatic systems. Some methods and contents are performed in this project: By using geomorphologic and sedimentary methods, we study the formation processes of present landform and environment frames. By collecting lake cores, ice cores and tree rings, we study key events during the past environment changes and their linkages to global changes. By analyzing the space-time variations of glaciers, permafrost and snow accumulations together with observation of boundary layers, we study the variations of cryosphere and cycling processes of energy and water. By monitoring the glaciers, lakes and atmosphere together with using climatic models, we study the potential mechanism of environmental changes. By detecting the variations of carbon sources and sinks in the dominant ecosystems, we study the response of the main ecosystem to environmental changes. By a series of integrated analyses, we study the effects of the environmental changes and water sources changes on the Tibetan Plateau and adaptation strategies under global changes.

中图分类号: 

[1] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian Climate to surface uplift of the Tibetan Plateau[J]. Journal of Geology,1993,101:177-190.

[2] 孙鸿烈, 郑度.青藏高原综合科学考察研究的回顾与展望[C]郑度等主编.青藏高原形成环境与发展. 石家庄: 河北科学技术出版社, 2003.

[3] Guo Z T, Ruddiman W, Hao Q Z, et al. Onset of Asian desertifications by 22Myr ago inferred from loess deposits in China[J]. Nature,2002,416:159-163.

[4] Fang X M, Carmala G, Rob V, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin,China[J]. Earth and Planetary Science Letters,2003,210:545-560.

[5] Liu X D, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography[J]. Palaeoclimatology, Palaeoecology,2002,183:223-245.

[6] 姚檀栋, 徐柏青, 段克勤, .青藏高原达索普冰芯2 ka来温度和甲烷浓度变化记录[J].中国科学:D,2002,32(4):346-352.

[7] Zhu Liping, Wang Junbo, Chen Ling, et al. 20,000-year environmental change reflected by Multidisciplinary Lake sediments in Chen Co, Southern Tibet[J]. Acta Geographica Sinica,2004,59(4):514-524.[朱立平,王君波,陈玲,.藏南沉错湖泊沉积多指标揭示的二万年以来环境变化[J].地理学报,2004,59(4):514-524.]

[8] Thompson L G, Mosley-Thompson E, Davis M E, et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales[J]. Climatic Change,2002,59:137-155.

[9] 施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报,2000,45(4):434-438.

[10] Meier M F, Dyurgerov M B. How Alaska affects the world[J]. Science,2002,297:350-351.

[11] Wang S L, Niu F J, Zhao L, et al. The thermal stability of roadbed in permafrost regions along Qinghai-Tibet Highway[J]. Cold Regions Science and Technology,2003,37:25-34.

[12] Chen Guichen, Huang Zhiwei, Lu Xuefeng, et al. Characteristics of wetland and its conservation in the Qinghai Plateau[J]. Journal of Glaciology and Geocryology,2002,24(3):254-259.[陈桂琛, 黄志伟, 卢学峰, . 青海高原湿地特征及其保护[J].冰川冻土,2002,24(3):254-259.]

[13] Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters,2004,7(12):1 170-1 179.

[14] 郑度,姚檀栋,.青藏高原隆升与环境效应[M]. 北京: 科学出版社,2004.

[15] Bollasina M, Benedict S. The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system[J]. Bulletin of the American Meteorological Society,2004,85(7):1 001.

[16] Wu Guoxiong, Liu Yimin, Liu Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences,2005,29(1):47-56.[吴国雄, 刘屹岷, 刘新, .青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学,2005,29(1):47-56.]

[17] 方小敏, 韩永翔, 马金辉, . 青藏高原沙尘特征与高原黄土堆积: 2003-03-04拉萨沙尘天气过程为例[J]. 科学通报,2004,49(11):1 084-1 090.

[18] Wu T W, Qian Z G. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J]. Journal of Climate,2003,16:2 038-2 051.

[19] 苏珍, 施雅风. 小冰期以来中国季风温冰川对全球变暖的响应[J]. 冰川冻土,2000,22(3):223-229.

[20] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the northern Pacific: Asian drying, Tibet uplift, and cooling of the northern hemisphere[J]. Palaeoceanography,1998,13:215-224.

[21] Raymo M E, Ruddiman W F, Froelich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles[J]. Geology,1988,16:649-653.

[22] Moore III B. Meeting tomorrow's challenges[J]. IGBP News Letter,1999,38:2.

[23] Chen Yiyu, Chen Panqin, Ge Quansheng, et al. Global change research: Progress and prospect[J]. Earth Science Frontiers,2002,9(1):11-18.[陈宜瑜,陈泮勤,葛全胜,.全球变化研究进展与展望[J]. 地学前缘,2002,9(1):11-18.]

 

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
阅读次数
全文


摘要