地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 308 -318. doi: 10.11867/j.issn.1001-8166.2020.023

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原交通设施建设及影响评价研究进展
苗毅 1( ),刘海猛 2,宋金平 1( ),戴特奇 1   
  1. 1.北京师范大学地理科学学部, 北京 100875
    2.中国科学院地理科学与资源研究所, 北京 100101
  • 收稿日期:2020-01-05 修回日期:2020-02-17 出版日期:2020-03-10
  • 通讯作者: 宋金平 E-mail:jinpingsong@163.com
  • 基金资助:
    第二次青藏高原综合科学考察研究专题“生态安全保障的地域功能类型与区划”(2019QZKK0406)

Research Progress of Transportation Facilities Construction and Their Impact Assessment in the Qinghai Tibet Plateau

Yi Miao 1( ),Haimeng Liu 2,Jinping Song 1( ),Teqi Dai 1   

  1. 1.Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2020-01-05 Revised:2020-02-17 Online:2020-03-10 Published:2020-04-10
  • Contact: Song Jinping E-mail:jinpingsong@163.com
  • About author:Miao Yi (1992-), male, Weihai City, Shandong Province, Ph.D student. Research areas include regional development and transport geography. E-mail: 632129767@qq.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program "Regional functional types and regionalization of ecological security"(2019QZKK0406)

青藏高原是中国重要的生态安全屏障和战略资源储备基地,探究其交通设施建设及影响意义重大,梳理相关研究发现: 伴随宏观区域政策和主要交通设施建设,2000年后相关研究快速增长,中国科学院、交通类院校机构贡献突出; 交通设施建设研究主要包括冻土融化等因素的制约及对策,其综合交通运输体系发展历程及区域联系、可达性改善效果与空间特征等; 影响评价主要围绕生态环境和社会经济,结果分别以扰动生态系统、切割景观格局、改变物种习性等负效应和改变区域发展格局、带动旅游及相关产业等正效应为主,多维度、多尺度正负效应间呈差异化及多重反馈特征。伴随第二次青藏高原综合科学考察及第三极国家公园群、川藏铁路等建设,应进一步聚焦关键技术、交通体系同国家战略与区域功能的平衡、出行感知与综合可达性的结合、耦合视角下的综合影响机制梳理与分析框架构建等。

The Qinghai Tibet Plateau (QTP) is an important ecological security barrier region and strategic resource reserve base in China. It is of great significance to explore the construction and impact of its transportation facilities. Through combing the relevant research, we found that: With the construction of macro regional policies and major transportation facilities, the relevant research has been growing rapidly since 2000, and the contribution of Chinese Academy of Sciences, transportation universities and research institutions is outstanding; The key research of QTP's transportation facilities construction includes the constraints and countermeasures of permafrost melting, sandstorm, erosion and geological disasters, the development process of modern comprehensive transportation system and its spatial characteristics, and the evolution of multi-scale regional traffic connection and accessibility; The regional impact assessment of traffic facilities mainly focuses on ecological environment and social economy. The former results are mainly negative effects such as disturbing ecosystem, cutting landscape pattern, destroying vegetation cover and disturbing the normal living habits of wild animals, while the latter ones are mainly positive effects like promoting macro regional development, changing the spatial structure of regional development, and driving the development of tourism and other related industries. In general, the positive and negative effects of multi-dimensional and multi-scale show the characteristics of differentiation and multiple feedbacks. With the implementation of the Second Comprehensive Scientific Investigation on the QTP and the construction of Third Pole National Park Group, Sichuan-Tibet Railway and Qinghai-Tibet Expressway, we should further focus on the breakthroughs in key relevant technologies, the balance of transportation system with national strategies and regional functions, the combination of travel perception and comprehensive traffic accessibility, combing the comprehensive impact mechanism from the perspective of coupling and the construction of analysis framework that is in line with regional reality, etc.

中图分类号: 

图1 1992年以来青藏高原交通设施研究的发文情况
Fig.1 The number of papers about transportation facilities in the Qinghai Tibet Plateau in core journals since 1992
图2 青藏高原交通设施中文研究成果的主题词共现网络
Fig.2 The subject words co-occurrence network of Chinese papers about transportation facilities in the Qinghai Tibet Plateau
表1 青藏高原交通设施研究发文量前 10位的单位
Table 1 Top 10 sources organizations of published papers about transport facilities in the Tibetan Plateau
图3 青藏高原道路网络建设发展历程[ 27 ]
Fig.3 The development of road network construction in the Qinghai Tibet Plateau[ 27 ]
图4 青藏高原交通设施的多尺度差异化区域影响
微观为设施邻近区;中观为城镇体系与交通沿线带;宏观为省域、青藏高原或更大区域
Fig.4 Regional impact of multi-scale differentiation of transportation facilities in Qinghai Tibet Plateau
The micro scale means the adjacent area of transport facilities; The meso scale includes the urban system and the traffic belt; The macro scale includes the province, the Qinghai Tibet Plateau or larger area
1 Wang Chengjin, Jin Fengjun. Research history and developing trend about geography of transportation in China[J]. Progress in Geography, 2005, 24(6): 66-78.
王成金, 金凤君. 中国交通运输地理学的研究进展与展望[J]. 地理科学进展, 2005, 24(6): 66-78.
2 Xi Jinping. Xi Jinping's congratulatory letter to the comprehensive scientific expedition team of the Qinghai Tibet Plateau, Chinese Academy of Sciences[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 914.
习近平. 习近平致中国科学院青藏高原综合科学考察研究队的贺信[J]. 中国科学院院刊, 2017, 32(9): 914.
3 Zong Gang, Sun Dongtao. The main problems and countermeasures of Tibet's economic development[J]. Special Zone Economy, 2010, 28(5): 214-215.
宗刚, 孙东涛. 西藏经济发展面临的主要问题及其对策研究[J]. 特区经济, 2010, 28(5): 214-215.
4 Wang Xuemei, Li Xin, Ma Mingguo, et al. Spatial analysis on the geographical information of the scientific literatures for Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11): 1 288-1 294.
王雪梅,李 新,马明国, 等. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 2012, 27(11):1 288-1 294.
5 Wen Jun. Analysis of the environmental background conditions for the development of transportation in the Qinghai Tibet Plateau[J]. China Tibetology, 1999, 12(4): 30-48.
温军. 青藏高原交通运输发展的环境背景条件分析[J]. 中国藏学, 1999, 12(4): 30-48.
6 Wu Qingbai, Tong Changjiang. Permafrost change and stability of Qinghai Tibet Highway[J]. Journal of Glaciology and Geocryology, 1995, 17(4): 350-355.
吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题[J]. 冰川冻土, 1995, 17(4): 350-355.
7 Wang Shaoling, Zhao Lin, Li Shuxun, et al. Study on thermal balance of asphalt pavement and roadbed stability in permafrost regions of the Qinghai-Tibetan Highway[J]. Journal of Glaciology and Geocryology, 2001, 23(2): 111-118.
王绍令, 赵林, 李述训, 等. 青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究[J]. 冰川冻土, 2001, 23(2): 111-118.
8 Wang Shaoling. Permafrodt changes along the Qinghai-Xizang Highway during the last decades[J]. Arid Land Geography, 1993, 10(3): 1-8.
王绍令. 近数十年来青藏公路沿线多年冻土变化[J]. 干旱区地理, 1993, 10(3): 1-8.
9 Tong C, Wu Q. The effect of climate warming on the Qinghai-Tibet Highway, China[J]. Cold Regions Science & Technology, 1996, 24(1): 101-106.
10 Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15.
刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.
11 Ma W, Mu Y, Wu Q, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science & Technology, 2011, 67(3):178-186.
12 Zhao Yongguo. Geological disasters and controlling countermeasures along the highway from Sichuan to Xizang[J]. Journal of Natural Disasters, 1993, 2(1): 72-78.
赵永国. 川藏公路沿线地质灾害及其整治对策[J]. 自然灾害学报, 1993, 2(1): 72-78.
13 Jin Hu. Success in harnessing the sand disaster of Qinghai Tibet Railway[J]. Journal of Botany, 1992, 19(2): 33.
金湖. 青藏铁路沙害治理取得成功[J]. 植物杂志, 1992, 19(2): 33.
14 Li Haidong, Fang Ying, Shen Weishou, et al. Spatial distribution and evolution of aeolian sandy land in the areas around Shigatse Peace Airport of Tibet, China since 1975[J]. Journal of Natural Resources, 2011, 26(7): 1 148-1 155.
李海东, 方颖, 沈渭寿, 等. 西藏日喀则机场周边风沙源空间分布及近34年的演变趋势[J]. 自然资源学报, 2011, 26(7): 1 148-1 155.
15 Li Haidong, Shen Weishou, Zou Changxin, et al. Spatial distribution and evolution of aeolian sandy land in the areas around Lhasa Airport (Tibet, China) since 1990[J]. Acta Ecologica Sinica, 2010, 30(21): 5 716-5 727.
李海东, 沈渭寿, 邹长新, 等. 西藏拉萨机场周边风沙源空间分布及演变趋势[J]. 生态学报, 2010, 30(21): 5 716-5 727.
16 Xu Shi, Cai Xianzheng. Experimental study on anti-corrosion of railway concrete bridge in saline area of Qinghai Tibet Railway[J]. Railway Engineering, 1992, 32(11):7-9.
徐实, 蔡先正. 青藏线盐渍区铁路混凝土桥防腐蚀试验研究[J].铁道建筑1992, 32(11): 7-9.
17 Sun Honglie. Recent advance in studies on Qinghai-Xizang Plateau[J]. Advances in Earth Science, 1996, 11(6):18-24.
孙鸿烈. 青藏高原研究的新进展[J]. 地球科学进展, 1996, 11(6):18-24.
18 Cheng Guodong. Interaction between Qinghai-Tibet Railway engineering and permafrost and environmental effects[J]. Bulletin of the Chinese Academy of Sciences, 2002, 17(1): 21-25.
程国栋. 青藏铁路工程与多年冻土相互作用及环境效应[J]. 中国科学院院刊, 2002, 17(1): 21-25.
19 Qinghai Tibet Highway Research Group of the Ministry of Communications. Subgrade stability of asphalt pavement in permafrost region of Qinghai Tibet Highway[J]. Journal of Glaciology and Geocryology, 1979, 1(2): 43-51.
交通部青藏公路科研组. 青藏公路多年冻土地区修筑沥青路面时的路基稳定问题[J]. 冰川冻土, 1979, 1(2): 43-51.
20 Wang Shaoling. Thaw Slumping in Fenghuo Mountain area along Qinghai-Xizang Highway[J]. Journal of Glaciology and Geocryology, 1990, 12(1): 63-70.
王绍令. 青藏公路风火山地区的热融滑塌[J]. 冰川冻土, 1990, 12(1): 63-70.
21 Cheng Guodong. Construction of Qinghai-Tibet Railway with cooled roadbed[J]. China Railway Science, 2003, 24(3): 1-4.
程国栋. 用冷却路基的方法修建青藏铁路[J]. 中国铁道科学, 2003, 24(3): 1-4.
22 Xu X, Zhang K, Kong Y, et al. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan Plateau, China[J]. Transportation Research Part D Transport & Environment, 2006, 11(4):302-309.
23 Liu Fenggui, Zhang Haifeng, Chen Qiong, et al. The characteristics of natural hazard regional combination law along the Qinghai-Tibet Railway[J]. Scientia Geographica Sinica, 2010, 30(3): 384-390.
刘峰贵, 张海峰, 陈琼, 等. 青藏铁路沿线自然灾害地理组合特征分析[J]. 地理科学, 2010, 30(3): 384-390.
24 Jiang Zhongxin, Cui Peng, Wang Chenghua. Theoretical principles on selection route of traffic main line entering into Tibet for mitigating mountain hazards[J]. Journal of Railway Engineering Society, 2004, 21(2): 1-6.
蒋忠信, 崔鹏, 王成华. 进藏交通干线减灾选线理论原则[J]. 铁道工程学报, 2004, 21(2): 1-6.
25 Zhao Jian'an. Development prospect of communication and transportation networks of the Qinghai-Tibet Plateau in the earlier stage of 21st century[J]. Resources Science, 2002, 24(4): 5-10.
赵建安. 21世纪前期青藏高原交通运输网络发展前景探讨[J]. 资源科学, 2002, 24(4): 5-10.
26 Liao Jiayi, Dai Teqi. Spatial pattern and service level of Chinese feeder aviation in small airports[J]. Tropical Geography, 2017, 37(2): 238-245.
廖家仪, 戴特奇. 中国小机场支线航空的空间格局与服务水平[J]. 热带地理, 2017, 37(2): 238-245.
27 Gao Xingchuan, Cao Xiaoshu, Li Tao, et al. Evolution of accessibility spatial pattern of the Qinghai-Tibet Plateau in 1976-2016[J]. Acta Geographica Sinica, 2019, 74(6): 1 190-1 204.
高兴川, 曹小曙, 李涛, 等. 1976—2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1 190-1 204.
28 Zhao Jian'an. Development of communication and transportation in the southern valley of the Qinghai-Tibet Plateau[J]. Resources Science, 2000, 22(4): 67-71.
赵建安. 青藏高原藏南谷地的交通运输发展[J]. 资源科学, 2000, 22(4): 67-71.
29 Jin Jianli, Guangdong Lü. Study on the reasonable density of the highway network in Tibet[J]. Science & Technology Association Forum, 2013, 28(10): 7-8.
金建立, 吕光东. 西藏公路网合理密度研究[J]. 科协论坛, 2013, 28(10): 7-8.
30 Yu Aihui, Chen Xumei, Cheng Xiangjun. Research on co-evolution of the city cluster economy and the airport clusters in Northwestern China[J]. Journal of Civil Aviation, 2019, 3(4): 8-12.
于爱慧, 陈旭梅, 承向军. 中国西北部城市群经济与机场群协同演化研究[J].民航学报, 2019, 3(4): 8-12.
31 Yang X, Qiu X, Fang Y, et al. Spatial variation of the relationship between transport accessibility and the level of economic development in Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2019, 16(8): 1 883-1 900.
32 Li S, Gong J, Deng Q. Impacts of the Qinghai-Tibet Railway on accessibility and economic linkage of the Third Pole [J]. Sustainability, 2018, 10(11): 1-17.
33 Li Lingjie, Wu Qunqi. Analysis on the traffic coverage of Qinghai Province based on the road network accessibility[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2018, 50(2): 233-241.
李灵杰, 吴群琪. 基于路网可达性的青海交通运输覆盖度分析[J]. 西安建筑科技大学学报:自然科学版, 2018, 50(2): 233-241.
34 Chen Min, Zhang Haifeng. Analysis of accessibility time of tourist attractions in Qinghai Province[J]. Yunnan Geographic Environment Research, 2013, 25(2): 23-27.
陈敏, 张海峰. 青海旅游景点(区)的时间可达性分析[J]. 云南地理环境研究, 2013, 25(2): 23-27.
35 Sun Zhizhong, Ma Wei, Mu Yanhu, et al. Permafrost change under natural sites along the Qinghai-Tibet Railway during the years of 2006-2015[J]. Advances in Earth Science, 2018, 33(3): 248-256.
孙志忠, 马巍, 穆彦虎, 等. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
36 Ma Wei,Mu Yanhu,Xie Shengbo,et al. Thermal-mechanical influences and environmental effects of expressway construction on the Qinghai-Tibet Permafrost Engineering Corridor[J]. Advances in Earth Science, 2017, 32(5): 459-464.
马巍, 穆彦虎, 谢胜波, 等. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
37 Dong Rencai, Sun Xiaoze, Li Chunming, et al. GIS model for eco-environmental sensitivity assessment of the areas along Qinghai-Tibetan Railway[J]. Chinese Journal of Ecology, 2011, 30(9): 2 093-2 098.
董仁才, 孙晓泽, 李春明, 等. 青藏铁路沿线生态环境敏感性评价GIS模型[J]. 生态学杂志, 2011, 30(9): 2 093-2 098.
38 Zhang H, Wang Z, Zhang Y, et al. The effects of the Qinghai-Tibet Railway on heavy metals enrichment in soils[J]. Science of the Total Environment, 2012, 439:240-248.
39 Wang Guanxing, Yan Xuedong, Zhang Fan, et al. Influencing factors of heavy metal concentration in roadside-soil of Qinghai-Tibet Plateau[J]. Acta Scientiae Circumstantiae, 2014, 34(2): 431-438.
王冠星, 闫学东, 张凡, 等. 青藏高原路侧土壤重金属含量分布规律及影响因素研究[J]. 环境科学学报, 2014, 34(2): 431-438.
40 Chen Zuo. The impact and benefit of the Qinghai-Tibetan Railway on the ecological environment[J]. Railway Occupational Safety, Health & Environmental Protection, 2001, 28(3):141-145.
陈佐. 青藏铁路的生态环境影响与效益[J]. 铁道劳动安全卫生与环保, 2001, 28(3):141-145.
41 An Baosheng, Cheng Guodong. The impact of Qinghai-Tibet Railway on the ecological footprint and carrying capacity of Tibet[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1 292-1 300.
安宝晟, 程国栋. 青藏铁路开通后对西藏生态足迹和生态承载力的影响[J]. 冰川冻土, 2013, 35(5): 1 292-1 300.
42 Kang Shibin. Impact assessment the effect of Qinghai-Tibet Railway construction on ecological environment[J]. Modern Agricultural Sciences, 2008, 15(6): 41-42.
康世斌. 青藏铁路建设对生态环境的影响评价[J]. 现代农业科学, 2008, 15(6): 41-42.
43 Zhang Hui, Shen Weishou, Zhang Hua, et al. Impacts of construction of Qinghai-Tibet Railway on landscape pattern.[J]. Rural Eco-environment, 2004, 20(3): 20-23.
张慧, 沈渭寿, 张华, 等. 青藏铁路建设对沿线景观格局的影响[J]. 农村生态环境, 2004, 20 (3): 20-23.
44 Chen H, Li S, Zhang Y. Impact of road construction on vegetation alongside Qinghai-Xizang Highway and Railway [J]. Chinese Geographical Science, 2003, 13(4): 340-346.
45 Zhang Yili, Yan Jianzhong, Liu Linshan, et al. Impact of Qinghai-Xizang Highway on land use and landscape pattern change: From Golmud to Tanggulashan pass[J]. Acta Geographica Sinica, 2002, 57(3): 253-266.
张镱锂, 阎建中, 刘林山, 等. 青藏公路对区域土地利用和景观格局的影响——以格尔木至唐古拉山段为例[J]. 地理学报, 2002, 57(3): 253-266.
46 Ding Mingjun, Shen Zhenxi, Zhang Yili, et al. Vegetation change along the Qinghai-Xizang highway and railway from 1981 to 2001[J]. Resources Science, 2005, 27(5): 128-133.
丁明军, 沈振西, 张镱锂, 等. 青藏公路与铁路沿途1981年—2001年植被覆盖变化[J]. 资源科学, 2005, 27(5): 128-133.
47 Wang G, Gillespie A, Liang S, et al. Effect of the Qinghai-Tibet Railway on vegetation abundance[J]. International Journal of Remote Sensing, 2015, 36(19):5 222-5 238.
48 Li Yansen,Zhou Jinxing,Wu Xiuqin. Effects of the construction of Qinghai-Tibet railway on the vegetation ecosystem and eco-resilience[J]. Geographical Research, 2017, 36(11):2 129-2 140.
李延森,周金星,吴秀芹.青藏铁路(格拉段)修建对沿线植被生态系统及其弹性的影响[J]. 地理研究, 2017, 36(11):2 129-2 140.
49 Qiu Li, Feng Zuojian. Effects of traffic during daytime and other human activities on the migration of Tibetan Antelope along the Qinghai-Tibet high-way, Qinghai-Tibet Plateau[J]. Acta Zoologica Sinica, 2004, 50(4): 669-674.
裘丽, 冯祚建. 青藏公路沿线白昼交通运输等人类活动对藏羚羊迁徙的影响[J]. 动物学报, 2004, 50(4): 669-674.
50 Yin Baofa, Yu Zhiyong, Yang Shengmei, et al. Effects of Qinghai-Tibetan Highway on the activities of Pantholops hodgsoni, Procapra picticaudata and Equus kiang[J]. Chinese Journal of Ecology, 2007, 26(6): 810-816.
殷宝法, 于智勇, 杨生妹, 等. 青藏公路对藏羚羊、藏原羚和藏野驴活动的影响[J]. 生态学杂志, 2007, 26(6): 810-816.
51 Shen Weishou, Zhang Hui, Zou Changxin, et al. Study on the impact of Qinghai Tibet Railway construction on the alpine ecosystem along the line and the restoration prediction method[J]. Chinese Science Bulletin, 2004, 49(9): 909-914.
沈渭寿, 张慧, 邹长新, 等. 青藏铁路建设对沿线高寒生态系统的影响及恢复预测方法研究[J]. 科学通报, 2004, 49(9): 909-914.
52 Feng Xiaodong, Liu Xin. Modern traffic and endangered species of wild animals protection: A case study of Pantholops hodgsonii[J]. Forestry Economics, 2007, 29(2): 69-71.
冯晓东, 刘欣. 现代交通建设与濒危野生动物的保护——以藏羚羊为例[J]. 林业经济, 2007, 29(2): 69-71.
53 Li Z, Ge C, Li J, et al. Ground-dwelling birds near the Qinghai-Tibet Highway and Railway[J]. Transportation Research Part D: Transport and Environment, 2010, 15(8):525-528.
54 Jin Shixun. The influence of the completion and opening of the Qinghai Tibet Railway on the economic development of Tibet[J]. Macroeconomics, 2006, 28(7): 47-51, 41.
金世洵. 青藏铁路建成通车对西藏经济发展的影响[J]. 宏观经济研究, 2006, 28(7): 47-51, 41.
55 Wang Yang, Wu Binzhen. Can transportation investment stimulate local economy?The case of Qingzang Railway[J]. China Journal of Economics, 2014, 1(1): 55-80.
王洋, 吴斌珍. 基础交通建设能否促进当地经济的发展?——以青藏铁路为例[J]. 经济学报, 2014, 1(1): 55-80.
56 Li S, Wang Z, Zhang Y, et al. Comparison of socioeconomic factors between surrounding and Non-Surrounding areas of the Qinghai-Tibet Railway before and after its construction [J]. Sustainability, 2016, 8(8): 776.
57 Fang Min. The evolution model of Qinghai-Tibet railroad economic belt on spatial structure—Double-core spatial structure of consistent conjectures[J]. Economic Geography, 2007, 27(4): 661-664.
方敏. 青藏铁路经济带的空间结构演化模式——共轭双核结构[J]. 经济地理, 2007, 27(4): 661-664.
58 Gao Dahong, Guo Hailiang. Study on Qinghai-Tibet Railway economic belt based on the theory of growth pole and point-axis development[J]. Journal of Tibet University, 2008, 23(2): 13-16.
高大洪, 郭海亮. 基于增长极和点轴开发理论基础上的青藏铁路经济带发展战略研究[J]. 西藏大学学报:社会科学版, 2008, 23(2): 13-16.
59 Liang Shumin, Li Weimin, Bai Shi. The Qinghai-Xizang Railway's impact on Xizang' s urban development[J]. Urban Studies, 2006, 13(4): 15-18.
梁书民, 厉为民, 白石. 青藏铁路对西藏城市(镇)发展的影响[J]. 城市发展研究, 2006, 13(4): 15-18.
60 Li Hanlin. Research into countermeasures and effect of Qinghai-Tibet Railway on Tibetan population development[J]. Journal of Chongqing Technology and Business University(West Forum), 2007, 17(1): 46-51.
李含琳. 青藏铁路对西藏人口发展的影响和对策研究[J]. 重庆工商大学学报:西部论坛, 2007, 17(1): 46-51.
61 Cheng G, Zhao S, Di H. Understanding the effects of improving transportation on Pilgrim Travel Behavior: Evidence from the Lhasa, Tibet, China [J]. Sustainability, 2018, 10(10): 1-13.
62 Liu Yongqian. A study on the influence of "Lhasa Xigaze Railway" on the development of Xigaze cultural tourism industry[J]. Modern Business, 2014, 9(35): 120-123.
刘永千. “拉日铁路”对日喀则文化旅游产业发展的影响研究[J]. 现代商业, 2014, 9(35): 120-123.
63 Zhang Zhongxiao, Zhao Weizhang, Cao Fengrong. On the investigation, development and utilization of tourism resources along the Qinghai Tibet highway[J]. Qinghai Social Sciences, 1988, 9(4): 34-39.
张忠孝, 赵维张, 曹风荣. 青藏公路沿线旅游资源调查与开发利用问题刍议[J]. 青海社会科学, 1988, 9(4): 34-39.
64 Su M, Wall G. The Qinghai-Tibet Railway and Tibet Tourism: Travelers' perspectives[J]. Tourism Management, 2009, 30(5): 650-657.
65 Zong Gang, Li Jing. Study on the coordinated development of transportation and tourism economy in Tibet[J]. China Tibetology, 2015, 28(1):140-146.
宗刚, 李婧. 西藏交通运输与旅游经济协调发展研究[J]. 中国藏学, 2015, 28(1):140-146.
66 Chen Rong, Ma Yaofeng, Luo Yunmin. Study on the coordinated development of transportation and tourism economy in the Qinghai Tibet Plateau in the past 20 years[J]. Qinghai Social Sciences, 2016, 37(2): 109-114.
陈蓉, 马耀峰, 罗赟敏. 二十年来青藏高原交通与旅游经济协调发展研究[J]. 青海社会科学, 2016, 37(2): 109-114.
67 Li Feifei, Tian Zhimei. The initial research of rail travel—And discuss the feasibility of the rail travel on the Qinghai-Tibet Railway[J]. Journal of Capital Normal University(Natural Science Edition), 2009, 30(2): 85-90.
李飞飞, 田至美. 观光列车旅游初探——兼论青藏铁路开展观光列车旅游的可行性[J]. 首都师范大学学报:自然科学版, 2009, 30(2): 85-90.
68 Zhang Ruiying, Xi Jianchao, Yao Yulong, et al. Evaluation of tourism dynamic landscape along Qinghai-Tibet Railway based on the visual corridor[J]. Acta Ecologica Sinica, 2014, 34(12): 3 320-3 330.
张瑞英, 席建超, 姚予龙, 等. 基于视觉廊道的青藏铁路沿线旅游动态景观评价[J]. 生态学报, 2014, 34(12): 3 320-3 330.
69 He Yuancheng. Opportunities and challenges brought by Qinghai Tibet Railway to Tibet logistics industry[J]. Railway Transport and Economy, 2007, 29(3): 57-59.
何远成. 青藏铁路带给西藏物流业的机遇与挑战[J]. 铁道运输与经济, 2007, 29(3): 57-59.
70 Hu Jinfa. For flying safety at plateau airports[J]. Civil Aviation Economics & Technology, 2005, 57(9): 65-66.
胡金法. 保障高原机场安全飞行[J]. 中国民用航空, 2005, 57(9): 65-66.
71 Xiong Liquan. High altitude route calls for domestic aircraft[J]. Jetliner, 2018, 7(7): 46-50.
熊立权. 高高原航线呼唤国产飞机[J]. 大飞机, 2018, 7(7): 46-50.
72 Yang Jiping, Zhong Fanglei, Xu Xiaoming, et al. Quantitative evaluation of the impact of the Qinghai-Tibet Railway on the development of various economic sectors in Tibet[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 1 047-1 055.
杨吉萍, 钟方雷, 徐晓明, 等. 青藏铁路对西藏各经济部门发展影响的定量评估[J]. 冰川冻土, 2018, 40(5): 1 047-1 055.
73 Zhu Hong, Xie Dixiang, Liu Yinghua. The impacts of Qinghai-Tibet Railway to Tibet tourism sustainable development and measures[J]. Economic Geography, 2005, 25(6): 910-914.
朱竑, 谢涤湘, 刘迎华. 青藏铁路对西藏旅游业可持续发展的影响及其对策[J]. 经济地理, 2005, 25(6): 910-914.
74 Zhu Yufu, Tashi Nyima. The influence of Qing-Zang Railway's open to traffic on traditional culture of Tibet[J]. Heilongjiang National Series, 2009, 25(4): 130-137.
朱玉福, 尼玛扎西. 青藏铁路通车对西藏传统文化的影响[J]. 黑龙江民族丛刊, 2009, 25(4): 130-137.
75 Wang Ting. A Bibliometrical analysis of international cooperation research in the field of Tibetan Plateau[J]. Advances in Earth Science, 2016, 31(6): 650-662.
王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
76 Zheng Du, Chen Shupeng. Progress and disciplinary fronfiers of geographical research[J]. Advances in Earth Science, 2001, 16(5): 599-606.
郑度, 陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展, 2001, 16(5): 599-606.
77 Wee B. Accessible accessibility research challenges [J]. Journal of Transport Geography, 2016, 51(1): 9-16.
78 Wang Jiaoe, Jiao Jingjuan, Huang Jie, et al. Theory and methodology of transportation development and location measures[J]. Acta Geographica Sinica, 2018, 73(4): 666-676.
王姣娥, 焦敬娟, 黄洁, 等. 交通发展区位测度的理论与方法[J]. 地理学报, 2018, 73(4): 666-676.
79 Black W. An unpopular essay on transportation[J]. Journal of Transport Geography, 2001, 9(1):1-11.
80 Liu Haimeng, Fang Chuanglin, Li Yonghong. The coupled human and natural cube: A conceptual framework for analyzing urbanization and eco-environment interactions[J]. Acta Geographica Sinica, 2019, 74(8): 1 489-1 507.
刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1 489-1 507.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 琚宜文,戚宇,房立志,朱洪建,王国昌,王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
阅读次数
全文


摘要