地球科学进展 ›› 2021, Vol. 36 ›› Issue (1): 1 -8. doi: 10.11867/j.issn.1001-8166.2021.003

院士论坛    下一篇

2020年长江上游洪水看流域防洪对策
夏军 1( ), 陈进 1 , 2, 王纲胜 1, 程丹东 3   
  1. 1.水资源与水电工程科学国家重点实验室(武汉大学),湖北 武汉 430072
    2.长江水利委员会 长江科学院,湖北 武汉 430015
    3.西北大学城市与环境学院,陕西 西安 710127
  • 收稿日期:2020-11-26 修回日期:2021-01-07 出版日期:2021-03-19
  • 基金资助:
    国家自然科学基金重大项目“长江经济带水循环变化与中下游典型城市群绿色发展互馈影响机理及对策研究”(41890820)

Flood Control Strategies for the River Basin Enlightened by the 2020 Upper Yangtze River Floods

Jun XIA 1( ), Jin CHEN 1 , 2, Gangsheng WANG 1, Dandong CHENG 3   

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering Sciences,Wuhan University,Wuhan 430072,China
    2.Yangtze River Academy of Sciences,Changjiang Water Resources Commission;of the Ministry of Water Resources,Wuhan 430015,China
    3.College of Urban and Environmental Sciences,Northwest University,Xi'an 710127,China
  • Received:2020-11-26 Revised:2021-01-07 Online:2021-03-19 Published:2021-03-19
  • About author:XIA Jun (1954-), male, Xiaogan City, Hubei Province, Professor, Academician of the Chinese Academy of Sciences. Research areas include hydrology and water resources tesearch. E-mail: xiajun666@whu.edu.cn
  • Supported by:
    the the National Natural Science Foundation of China "Interaction mechanism and countermeasures between the water cycle change of the Yangtze River Economic Belt and green development of typical urban agglomerations in the middle and lower reaches"(41890820)

2020年长江上游和中下游先后发生特大洪水,其中干流编号洪水全部发生在上游,构成了长江流域洪水的主要部分。首先回顾2020年洪水及洪灾情况,然后根据历史上几次特大洪水过程和历年实测资料,分析长江上游洪水特征、洪灾类型及特点,最后提出新时代长江流域洪水整体防御战略及山洪灾害防治战术。研究表明:金沙江洪水是长江上游洪水基础部分,岷江、嘉陵江和干流区间是洪峰的主要来源,三者洪水遭遇是产生上游特大洪水的主因,上游洪水又是全流域特大洪水的基础和重要组成部分。目前造成洪灾死亡人数最多的是山洪以及山洪引起的地质灾害,财产损失最大的是中下游及湖泊地区。未来堤防仍然是防洪的基础,提高沿江城市防洪标准主要手段是控制性水库的联合优化调度,而减少洪涝灾害损失最有效的途径是给洪水以空间的自然解决方案等非工程措施。

In 2020, the upstream and mid-downstream of the Yangtze River experienced massive floods, with the major mainstream floods occurring in the upper Yangtze River. In this study, we first reviewed the floods and their related losses, and then analyzed the characteristics of flooding disasters in the upper Yangtze River based on several catastrophic floods in history. Finally, we proposed the integrated strategies for flood defense and the control tactics for flash floods in the Yangtze River Basin in the new era. Our results show that the floods in the Jinsha River underlay the floods in the upper Yangtze River, whereas the flood peaks were primarily attributed to the inflow from the Minjiang River, the Jialing River and the mainstream interval. The co-occurrence of floods in the aforementioned three tributaries led to the mega-floods in the upper Yangtze River, which formed the foundation and an important component of the basin-wide floods. At present, flash floods and accompanied geological disasters caused the largest number of deaths, and the biggest property losses occurred in the middle-lower reaches and the lake areas. In the future, the embankments will remain the basis of flood control. The main means to improve flood control standards of urbans long the river will rely on the joint optimal operation of reservoirs. In addition, the most effective way to reduce flood losses will be non-engineering measures such as natural solutions that give space to floods.

中图分类号: 

图1 长江主要水系及水文站点分布
Fig.1 Major tributaries and hydrological stations in the Yangtze River Basin
图1 长江主要水系及水文站点分布
Fig.1 Major tributaries and hydrological stations in the Yangtze River Basin
表1 2020年长江编号洪水情况
Table 1 Major floods of the Yangtze River in 2020
表1 2020年长江编号洪水情况
Table 1 Major floods of the Yangtze River in 2020
表2 长江上游历史特大洪水
Table 2 Historical mega-floods in the upper Yangtze River
表2 长江上游历史特大洪水
Table 2 Historical mega-floods in the upper Yangtze River
表3 长江干支流主要控制站洪水特征值表 [ 4 ]
Table 3 Statistical characteristics of mega-floods in the main hydrologic stations of the upper Yangtze River [ 4 ]
表3 长江干支流主要控制站洪水特征值表 [ 4 ]
Table 3 Statistical characteristics of mega-floods in the main hydrologic stations of the upper Yangtze River [ 4 ]
图2 长江上游主要防洪水库分布示意图
Fig.2 Distribution of major flood control reservoirs in the upper Yangtze River
图2 长江上游主要防洪水库分布示意图
Fig.2 Distribution of major flood control reservoirs in the upper Yangtze River
1 MA Jianhua. Practice and refection on flood control and disaster mitigation in Changjiang River Basin in 2020[J]. Yangtze River, 2020,51(12):1-7.[马建华. 2020年长江流域防洪减灾工作实践及思考[J].人民长江, 2020,51(12):1-7.]
MA Jianhua. Practice and refection on flood control and disaster mitigation in Changjiang River Basin in 2020[J]. Yangtze River, 2020,51(12):1-7.[马建华. 2020年长江流域防洪减灾工作实践及思考[J].人民长江, 2020,51(12):1-7.]
2 JIN Xingping. Role of joint operation of water conservancy projects in Changjiang River Basin in 2020[J]. Yangtze River, 2020,51(12):8-14.[金兴平.水工程联合调度在2020年长江洪水防御中的作用[J].人民长江, 2020,51(12):8-14.]
JIN Xingping. Role of joint operation of water conservancy projects in Changjiang River Basin in 2020[J]. Yangtze River, 2020,51(12):8-14.[金兴平.水工程联合调度在2020年长江洪水防御中的作用[J].人民长江, 2020,51(12):8-14.]
3 XIA Jun,CHEN Jin. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood[J]. Scientia Sinica Terrae, 2021, 51(1):27-34.
XIA Jun,CHEN Jin. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood[J]. Scientia Sinica Terrae, 2021, 51(1):27-34.
夏军,陈进.从防御2020年长江洪水看新时代防洪战略[J].中国科学:地球科学, 2021,51(1):27-34.
夏军,陈进.从防御2020年长江洪水看新时代防洪战略[J].中国科学:地球科学, 2021,51(1):27-34.
4 Changjiang River Water Resource Committees of Ministry of Water Resources. Integrated planning of the Yangtze River Basin(2012-2030)[Z]. 2012.
Changjiang River Water Resource Committees of Ministry of Water Resources. Integrated planning of the Yangtze River Basin(2012-2030)[Z]. 2012.
水利部长江水利委员会.长江流域综合规划(2012—2030) [Z]. 2012.
水利部长江水利委员会.长江流域综合规划(2012—2030) [Z]. 2012.
5 CHEN Jionghong, CHEN Guiya, NING Lei, et al. Consideration and preliminary study on joint water storage and dispatching of reservoir group in upper reaches of Yangtze River[J]. Yangtze River,2018,49(15):1-6.
CHEN Jionghong, CHEN Guiya, NING Lei, et al. Consideration and preliminary study on joint water storage and dispatching of reservoir group in upper reaches of Yangtze River[J]. Yangtze River,2018,49(15):1-6.
陈炯宏,陈桂亚,宁磊,等.长江上游水库群联合蓄水调度初步研究与思考[J].人民长江, 2018,49(15):1-6.
陈炯宏,陈桂亚,宁磊,等.长江上游水库群联合蓄水调度初步研究与思考[J].人民长江, 2018,49(15):1-6.
6 HU Xiangyang, DING Yi, ZOU Qiang, et al. Study and application of collaborative operation model of reservoir groups in upper reaches of Changjiang River for multi-regional flood control[J]. Yangtze River, 2020,51(1):56-64.
HU Xiangyang, DING Yi, ZOU Qiang, et al. Study and application of collaborative operation model of reservoir groups in upper reaches of Changjiang River for multi-regional flood control[J]. Yangtze River, 2020,51(1):56-64.
胡向阳,丁毅,邹强,等.面向多区域防洪的长江上游水库群协同调度模型[J].人民长江,2020,51(1):56-64.
胡向阳,丁毅,邹强,等.面向多区域防洪的长江上游水库群协同调度模型[J].人民长江,2020,51(1):56-64.
7 LIU Dongying, ZHANG Mingbo. Analysis of flood composition in upper stream of Three Gorges Project[J]. Yangtze River, 2010,41(19):14-18.
LIU Dongying, ZHANG Mingbo. Analysis of flood composition in upper stream of Three Gorges Project[J]. Yangtze River, 2010,41(19):14-18.
刘冬英,张明波.长江三峡以上洪水组成分析[J].人民长江, 2010,41(19):14-18.
刘冬英,张明波.长江三峡以上洪水组成分析[J].人民长江, 2010,41(19):14-18.
8 WANG Wei, HE Zhiyun. Discussion on countermeasures against mountain torrents in the Yangtze River Basin[J]. Yangtze River,2003,34(10):14-15.
WANG Wei, HE Zhiyun. Discussion on countermeasures against mountain torrents in the Yangtze River Basin[J]. Yangtze River,2003,34(10):14-15.
王威,何志芸.长江流域防御山洪灾害对策浅探[J].人民长江,2003,34(10):14-15.
王威,何志芸.长江流域防御山洪灾害对策浅探[J].人民长江,2003,34(10):14-15.
9 DU Jun, REN Hongyu, ZHANG Pingcang. Comparative study of the hazard assessment of mountain torrent disasters in macro scale[J]. Journal of Catastrophology, 2016,31(3):66-72.
DU Jun, REN Hongyu, ZHANG Pingcang. Comparative study of the hazard assessment of mountain torrent disasters in macro scale[J]. Journal of Catastrophology, 2016,31(3):66-72.
杜俊,任洪玉,张平仓, 等.大空间尺度山洪灾害危险评估的比较研究[J].灾害学,2016,31(3):66-72.
杜俊,任洪玉,张平仓, 等.大空间尺度山洪灾害危险评估的比较研究[J].灾害学,2016,31(3):66-72.
10 LIU Zhiyu. The research and practice on key technology of flood forecasting[J]. China Water Resource, 2020(17): 7-10.
LIU Zhiyu. The research and practice on key technology of flood forecasting[J]. China Water Resource, 2020(17): 7-10.
刘志雨. 洪水预测预报关键建设研究雨实践[J].中国水利,2020(17):7-10.
刘志雨. 洪水预测预报关键建设研究雨实践[J].中国水利,2020(17):7-10.
11 Changjiang River Water Resource Committees. Flood and drought disaster in the Changjiang River Basin[M]. Beijing: China Water Conservancy and Hydropower Press, 2002.
Changjiang River Water Resource Committees. Flood and drought disaster in the Changjiang River Basin[M]. Beijing: China Water Conservancy and Hydropower Press, 2002.
长江水利委员会.长江流域水旱灾害[M].北京:中国水利水电出版社,2002.
长江水利委员会.长江流域水旱灾害[M].北京:中国水利水电出版社,2002.
12 SUN Keke,CHEN Jin. Discussion on non-engineering measures of mountain torrents disaster prevention[J]. Flood Control and Drought Relief in China, 2010(6):79-81.
SUN Keke,CHEN Jin. Discussion on non-engineering measures of mountain torrents disaster prevention[J]. Flood Control and Drought Relief in China, 2010(6):79-81.
孙可可,陈进.山洪灾害防御的非工程措施探讨[J].中国防汛抗旱,2010(6): 79-81.
孙可可,陈进.山洪灾害防御的非工程措施探讨[J].中国防汛抗旱,2010(6): 79-81.
13 CHEN Jin. The situation, characteristics and strategy of flood control in China[J]. Science,2020,72(5):27-31.
CHEN Jin. The situation, characteristics and strategy of flood control in China[J]. Science,2020,72(5):27-31.
陈进.中国防洪形势、特点及战略[J].科学,2020,72(5):27-31.
陈进.中国防洪形势、特点及战略[J].科学,2020,72(5):27-31.
[1] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[2] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[3] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[4] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[5] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[6] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[7] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[8] 顾磊, 张洪波 , 陈克宇, 俞奇骏. 陕北地区河川基流的时空演变规律[J]. 地球科学进展, 2015, 30(7): 802-811.
[9] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[10] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[11] 戴海伦, 代加兵, 舒安平, 张科利. 河岸侵蚀研究进展综述[J]. 地球科学进展, 2013, 28(9): 988-996.
[12] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[13] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[14] 邓铭江,龙爱华,李湘权,章毅,雷雨. 中亚五国跨界水资源开发利用与合作及其问题分析  [J]. 地球科学进展, 2010, 25(12): 1337-1346.
[15] 张运林;黄群芳;马荣华;陈伟民. 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005, 20(7): 772-777.
阅读次数
全文


摘要