地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 431 -437. doi: 10.11867/j.issn.1001-8166.2014.04.0431

院士论坛    下一篇

黑河流域生态—水文过程集成研究进展
程国栋 1, 2, 肖洪浪 2, 傅伯杰 3, 肖笃宁 4, 郑春苗 5, 康绍忠 6, 延晓冬 7, 王毅 8, 安黎哲 9, 李秀彬 10, 陈宜瑜 1, 冷疏影 1, 王彦辉 11, 杨大文 12, 李小雁 7, 张甘霖 13, 郑元润 14, 柳钦火 15, 邹松兵 2   
  1. 1. 国家自然科学基金委员会, 北京 100085;
    2. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    3. 中国科学院生态环境研究中心, 北京 100085;
    4. 中国科学院沈阳应用生态研究所, 辽宁 沈阳 110016;
    5. 北京大学, 北京 100871;
    6. 中国农业大学, 北京 100083;
    7. 北京师范大学, 北京 100875;
    8. 中国科学院科技政策与管理科学研究所, 北京 100190;
    9. 兰州大学, 甘肃 兰州 730000;
    10. 中国科学院地理科学与资源研究所, 北京 100101;
    11. 中国林业科学研究院, 北京 100091;
    12. 清华大学, 北京 100083;
    13. 中国科学院南京土壤研究所, 江苏 南京 210008;
    14. 中国科学院植物研究所, 北京 100093;
    15. 中国科学院遥感与数字地球研究所, 北京 100101
  • 收稿日期:2014-03-11 出版日期:2014-04-10
  • 基金资助:

    国家自然科学基金重大研究计划“黑河流域生态—水文过程集成研究”重点项目“荒漠植物大气水汽利用机制及适应机理研究”(编号:91125025)资助.

Advances in Synthetic Research on the Eco-hydrological Process of the Heihe River Basin

Cheng Guodong 1,2,Xiao Honglang 2,Fu Bojie 3,Xiao Duning 4,Zheng Chunmiao 5,#br# Kang Shaozhong 6,Yan Xiaodong 7,Wang Yi 8,An Lizhe 9,Li Xiubin 10, Chen Yiyu 1, Leng Shuying 1,Wang Yanhui 11,Yang Dawen 12,Li Xiaoyan 7,Zhang Ganlin 13, Zheng Yuanrun 14,Liu Qinhuo 15, Zou Songbing 2   

  1. 1. National Natural Science Foundation of China, Beijing 100085, China;
    2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    4. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;5. Peking University, Beijing 100871, China;
    6. China Agricultural University, Beijing 100083, China;
    7. Beijing Normal University, Beijing 100875, China;
    8. Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China;
    9. Lanzhou University, Lanzhou 730000, China;10. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    11. Chinese Academy of Forestry, Beijing 100091, China;
    12. Tsinghua University, Beijing 100083, China;13. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;14. Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
    15. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2014-03-11 Online:2014-04-10 Published:2014-04-10

国家自然科学基金重大研究计划“黑河流域生态—水文过程集成研究”(简称黑河计划)贯穿地球系统科学的思维, 针对我国内陆河地区严峻的水—生态问题, 探索流域尺度提高水效益的理论和方法。计划执行4年来, 建立了遥感—监测—实验一体的流域生态水文观测系统及其相应的数据平台; 初步揭示了流域冰川、森林、绿洲等重要生态水文过程耦合机理, 认识了流域一级生态水文单元的水系统特征, 奠定了流域水循环、水平衡的科学基础; 计算了黑河下游生态需水量, 为黑河流域水资源优化管理厘定了重要的约束条件。今后几年将在高精度气、水、生、经时空数据的支持下, 耦合与集成流域综合模型, 保证我国流域科学能在世界前沿占一席之地。

The National Natural Science Foundation of China has launched a major research program entitled “Integrated Study of Eco-hydrological Processes in the Heihe River Basin” (referred to as “Heihe River Program”). It is grounded on the principles of the earth system science, and intended to explore the theory and methods of improving the water use efficiency in the inland river basins of China affected by severe water shortage and ecological deterioration problems. Since the implementation of the Heihe River Program for the past four years, we have established a basin-wide eco-hydrological observation system integrating remote sensing, monitoring and experimentation; developed a comprehensive database and information system; revealed the important coupling mechanism of eco-hydrological processes including glaciers, forests and oases; gained basic understanding of the system characteristics of eco-hydrological units which serve as the basis for computing the basin water cycle and water balance; and quantified the ecological water demand in the lower reaches of the Heihe River as the important constraints for optimal water resources management in the Heihe River Basin. In the next few years, we will integrate comprehensive watershed models supported by high-resolution spatio-temporal data of air, water, biota and economics towards the goal of playing a world-leading role in river science.

中图分类号: 

[1] Meridian Institute. Final Report of the National Watershed Forum[R]. Arlington, Virginia: Environmental Protection Agency, 2001.
[2] Committee on River Science, USGS, National Research Council. River Science at the U. S. Geological Survey[M]. Washington DC: National Academies Press, 2007.
[3] NSF Science and Technology Center. SAHRA:Sustainability of semi-arid hydrology and riparian areas final report[R]∥Department of Hydrology and Water Resources. Arizona: The University of Arizona, 2011.
[4] Xia Jun, Wang Zhonggen. Eco-Environment Quality Assessment: A Quantifying Method and Case Study in Ning Xia, Arid and Semi-Arid Region in China[C]. Wallingford, UK: IAHS Press, 2001:272.
[5] Global Water Partnership. Integrated Water Resources Management[M]. Stockholm:Technical Advisory Committee (TAC), 2004.
[6] Cleugh H A, Raupach M R, Briggs P R, et al. Regional-scale heat and water vapour fluxes in an agricultural landscape: An evaluation of CBL budget methods at OASIS[J]. Boundary-Layer Meteorology, 2005, 110(1): 99-137.
[7] Beyrich F, Mengelkamp H T. Evaporation over a Heterogeneous land surface: EVA-GRIPS and the LITFASS-2003 experiment—An overview[J]. Boundary-Layer Meteorology, 2006, 121: 5-32.
[8] Arnold J G, Muttiah R S, Srinivansan R, et al. Regional estimation of base flow and groundwater recharge in the upper Mississippi River Basin[J]. Jounral of Hydrology, 2000, 227:21-40.
[9] Abbaspour K C, Yang J, Maximov I, et al. Spatially distributed modelling of hydrology and water quality in the pre-alpine/alpine thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333:413-430.
[10] Lee H, Zehe E, Sivapalan M. Predictions of rainfall-runoff response and soil moisture dynamics in a microscale catchment using the CREW model[J]. Hydrological Earth System Science, 2007, 11: 819-849.
[11] Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia, 1987, 73:486-489.
[12] Schulze E D, Galdwell M M, Galdwell J, et al. Downward flux of water through roots (i. e. inverse hydraulic lift) in dry Kalahari sands[J]. Oecologia, 1998, 115:460-462.
[13] Su P X, Liu X M, Zhang L X. Comparison of δ 13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants[J]. Israel Journal of Plant Sciences, 2004, 52: 87-97.
[14] Xu H, Li Y. Water use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil, 2006, 285: 5-17.
[15] Ludiwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscape[J]. Ecology, 2004, 86(2):288-297.
[16] Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology[J]. Nature, 2003, 424:1 035-1 037.
[17] Whittaker R H. Evolution of measurement of species diversity[J]. Taxon, 1972, 21: 213-251.
[18] Chave J, Leigh E G. A spatially explicit neutral model of β-diversity in tropical forests[J]. Theory of Population Biology, 2002, 62:153-168.
[19] Sellers P J, Hall F G, Asrar G. The First ISLSCP Field Experiment (FIFE)[J]. Bulletin of American Meteorological Society, 1988, 69(1): 22-27.
[20] Committee on the Collaborative Large-Scale Engineering Analysis Network for Environmental Research, National Research Council. CLEANER and NSF’s Environmental Observatories[M]. Washington DC: National Academies Press, 2006.
[21] Li X, Cheng G D, Liu S M, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER):Scientific objectives and experimental design[J]. Bulletin of American Meteorological Society, 2013, 94:1 145-1 160.
[22] Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498. [李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498. ]
[23] Jia L, Shang H, Hu G, et al. Phenological response of vegetation to upstream river flow in the Heihe River Basin by time series analysis of MODIS data[J]. Hydrology & Earth System Sciences, 2011, 15:1 047-1 064.
[24] Liu N F, Liu Q, Wang L Z, et al. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data[J]. Hydrology and Earth System Sciences, 2013, 17:2 121-2 129.
[25] Li Huilin, Felix Ng, Li Zhongqin, et al. An extended ‘perfect-plasticity’ method for estimating ice thickness along the flow line of mountain glaciers[J]. Journal of Geophysical Research, 2012, 117: 1 020.
[26] Wang Puyu, Li Zhongqin, Gao Wenyu. Rapid shrinking of glaciers in the middle Qilian Mountain region of northwest China during the last 50 years[J]. Journal of Earth Science, 2011, 22(4):539-548.
[27] Zhao Liangju, Xiao Honglang, Zhou Maoxian, et al. Factors controlling spatial and seasonal distributions of precipitation δ 18O in China[J]. Hydrological Process, 2012, 25(25):1 906-2 015.
[28] Zhao Liangju, Xiao Honglang, Dong Zhibao, et al. Origins of groundwater inferred from isotopic patterns of the Badain Jaran Desert, Northwestern China[J]. Ground Water, 2012, 50(5):715-725.
[29] He Zhibin, Zhao Wenzhi, Liu Hu, et al. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains[J]. Journal of Hydrology, 2012, 420/421:183-190.
[30] He Zhibin, Zhao Wenzhi, Liu Hu, et al. Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains[J]. Hydrological Processes, 2012, 26: 613-621.
[31] Li D F, Shao M A. Simulating the vertical transition of soil textural layers in north-western China with a Markov chain model[J]. Soil Research, 2013, 51(3), doi: 10. 1071/SR 12332.
[32] Yao L Q, Feng S Y, Mao X M, et al. Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics[J]. Journal of Hydrology, 2012, 430/431: 91-102.
[33] Li Y, Zhou J, Kinzelbach W, et al. Coupling a SVAT heat and water flow model, a stomatal-photosynthesis model and a crop growth model to simulate energy, water and carbon fluxes in an irrigated maize ecosystem[J]. Agricultural and Forest Meteorology, 2013, 176: 10-24.
[34] Yu Tengfei, Feng Qi, Si Jianhua, et al. Patterns, magnitude, and controlling factors of hydraulic redistribution of soil water by Tamarix ramosissima roots[J]. Journal of Arid Land, 2013, 5(3):396-407.
[35] Yu Tengfei, Feng Qi, Si Jianhua, et al. Hydraulic redistribution of soil water by roots of two riparian forests phreatophytes in the northwest China’s arid region[J]. Plant and Soil, 2013, doi:10. 1007/s11104-013-1727-8.
[36] Wang Yaobin, Feng Qi, Si Jianhua, et al. The changes of LUCC in Ejina Oasis after water resources redistribution in Heihe River[C]∥Remote Sensing, Environment and Transportation Engineering, 2011 International Conference on. Nanjing, 2011: 6 451-6 454.
[37] Wang Yaobin, Feng Qi, Si Jianhua, et al. The changes of vegetation cover in Ejina Oasis based on water resources redistribution in Heihe River[J]. Environmental Earth Sciences, 2011, 64:1 965-1 973.
[38] Liu J, Zang C F, Tian S Y, et al. Water conservancy projects in China: Achievements, challenges and way forward[J]. Global Environmental Change, 2013, 23 (3): 633-643.
[39] Liu J, Folberth C, Yang H, et al. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use[J]. PLoS One, 2013, 8(2): e57750
[1] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[2] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[3] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[4] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[5] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[6] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[7] 李新,程国栋,吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域[J]. 地球科学进展, 2010, 25(3): 297-305.
[8] 李新,程国栋. 流域科学研究中的观测和模型系统建设[J]. 地球科学进展, 2008, 23(7): 756-764.
[9] 肖洪浪,程国栋,李彩芝,任娟,王赛. 黑河流域生态—水文观测试验与水—生态集成管理研究[J]. 地球科学进展, 2008, 23(7): 666-670.
[10] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[11] 葛全胜,王芳,陈泮勤,田砚宇,程邦波. 全球变化研究进展和趋势[J]. 地球科学进展, 2007, 22(4): 417-427.
[12] 吕克解,周小刚. “地球系统探测新原理与新技术”优先领域与地球系统科学[J]. 地球科学进展, 2006, 21(10): 1097-1100.
[13] 王毅. 新一代对地观测系统的发展[J]. 地球科学进展, 2005, 20(9): 980-989.
[14] 马福臣;林海;黄鼎成;张志强;姚玉鹏. 从地球过程到人地和谐——关于地球系统研究科学战略的思考[J]. 地球科学进展, 2005, 20(5): 490-498.
[15] 孙枢. 对我国全球变化与地球系统科学研究的若干思考[J]. 地球科学进展, 2005, 20(1): 6-010.
阅读次数
全文


摘要