地球科学进展 ›› 2018, Vol. 33 ›› Issue (12): 1248 -1258. doi: 10.11867/j.issn.1001-8166.2018.12.1248

研究论文 上一篇    下一篇

基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *
李天生( ), 夏军 *( )   
  1. 1.武汉大学 水资源与水电工程国家重点实验室,湖北 武汉 430072
    2.武汉大学 水安全研究院,湖北 武汉 430072
  • 收稿日期:2018-06-24 出版日期:2018-12-10
  • 通讯作者: 夏军 E-mail:2012301580244@whu.edu.cn;xiajun666@whu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“中小河流及无测站流域径流形成非线性机理及其模型的应用基础研究”(编号:41571028)资助.

Analysis of the Influence of Climate and Vegetation Change on Runoff in the Middle and Upper Reaches of the Pearl River Basin Based on Budyko Hypothesis *

Tiansheng Li( ), Jun Xia *( )   

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072,China
    2.The Research Institute for Water Security,Wuhan University,Wuhan 430072,China
  • Received:2018-06-24 Online:2018-12-10 Published:2019-01-18
  • Contact: Jun Xia E-mail:2012301580244@whu.edu.cn;xiajun666@whu.edu.cn
  • About author:

    First author:Li Tiansheng(1994-),male,Baiyin City,Gansu Province,Ph.D student. Research areas include water resource and hydrology. E-mail:2012301580244@whu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Study on the nonlinear mechanism of runoff formation in medium and small watersheds and non-station basins and the application of models" (No. 41571028).

径流作为水文循环的关键环节,在人类活动影响较小的地区受气候因素控制的同时,也受植被等陆面要素的影响。以珠江流域中上游地区为研究区域,基于Budyko理论具体分析了气候和植被变化对该区域径流的影响。首先应用TFPW-MK方法分析了1981—2013年研究区各要素的变化趋势;其次通过逐步回归拟合参数n,改进了Budyko理论框架下的傅抱璞公式,并基于改进的蒸散发模型模拟计算了区域蒸散发和径流;最后基于敏感性分析方法,分析了区域径流对气象要素和植被要素的敏感性。结果显示:1981—2013年珠江中上游地区平均温度(T)、最高温度(Tmax)和最低温度(Tmin)都存在上升趋势,而径流(Q)、降雨(P)、风速(u2)、相对湿度(RH)呈下降趋势。傅抱璞实际蒸散发计算公式中参数n同时受气候要素PTRH、日照时数(S)、u2和植被覆盖指数(NDVI)的制约。敏感性分析结果显示,流域径流对降雨和NDVI具有较高的敏感性,且流域降雨减少是径流减少的主导因素,而NDVI在研究时段没有显著的变化趋势,其对径流减少的贡献不显著。总体而言,气候变化对研究区域径流的影响主要是通过同时改变水文输入要素(降雨、潜在蒸散发)和表针流域特性的参数n来表现,而植被对研究区域径流的影响主要是通过改变表针流域特性的参数n来表现。

Runoff, which is a key component in the hydrological cycle, is mainly controlled by climate factors and land-surface elements in non-humid regions. The impacts of climate and vegetation changes on runoff based on Budyko hypothesis in the middle and upper reaches of the Pearl River Basin was analyzed in this article. First, the temporal trend of variables in the study area during 1981-2013 was examined by using the Mann-Kendall trend test with trend-free pre-whitening. Second, the relationship of the parameter n in Fu's equation with factors of climate and vegetation coverage was built to reveal the time-variation process of n. Finally, the effects of climatic factors and vegetation coverage on runoff were assessed by analyzing the sensitivity of runoff to each variable. It is found that average temperature (T), maximum temperature (Tmax) and minimum temperature (Tmin) in the study area present an increasing trend while runoff (Q), precipitation (P), wind speed (u2) and relative humid (RH) present decreasing trend. The parameter n in Fu's equation is significantly related to both climatic factors (including precipitation (P), average temperature (T), relative humid (RH), sunshine duration (S), wind speed (u2)) and vegetation coverage index (NDVI). In terms of sensitivity of Runoff (Q) to the variation of each climatic factors and NDVI in the middle and upper reaches of the Pearl River Basin, precipitation (P) and NDVI have the highest sensitivity, followed by other climatic factors. Additionally, the precipitation (P) reduction is the main driving factor to the decline in runoff, while vegetation coverage is another important factor. In general, climate change affects runoff not only by changing the hydrological inputs (precipitation (P) and potential evaporation (PET) but also by altering the watershed characteristics as represented by the parameter n, while the impacts of vegetation coverage on runoff are exerted mainly through the alteration of the watershed characteristics.

中图分类号: 

图1 珠江流域中上游地区示意图
Fig.1 The map of middle and upper reaches of the Pearl River Basin
表1 研究区域各要素趋势检验结果统计
Table 1 Results of trend analysis of the climate factors and NDVI in middle and upper reaches of the Pearl River Basin
图2 珠江中上游地区气象和植被要素变化趋势示意图
(a)径流量( Q),(b)降水量( P),(c)平均温度( T),(d)最高温度( T max),(e)最低温度( T min),(f)相对湿度( RH),(g)风速( u 2),(h)日照时数( S),(i)植被覆盖指数( NDVI)
Fig.2 Changes in climatic variables and NDVI in middle and upper reaches of the Pearl River Basin
(a)Runoff( Q),(b)Precipitation( P),(c)Average temperature( T),(d)Maximum temperature( T max),(e)Minimum temperature( T min),(f)Relative Humid( RH),(g)Wind speed( u 2),(h)Sunshine duration ( S),(i)Normalized Difference Vegetation Index( NDVI)
表2 研究区域参数 nt逐步拟合分析结果
Table 2 Stepwise regression results of parameter nt in study catchment
图3 参数标准值 nt与模拟值 nt 0比较
Fig.3 Comparison between nt and nt 0
图4 应用拟合参数 nt 0估算 AETtQt的精度验证
(a)模拟 AETt 0与实际 AETt比较;( b)模拟 Qt 0与观测 Qt比较
Fig.4 Accuracy verification of AETt and Qt by fitting parameter nt 0
(a) Comparison between AETt 0 and AETt; (b) Comparison between Qt 0 and Qt
图5 Qt对各个要素的敏感性系数
Fig.5 The sensitivity coefficient of runoff to the variables
图6 PtT maxtu 2 t变化对 Qt 0变化的影响
(a)、(b)、(c)分别为 PtT maxtu 2 t的原始序列和去趋势序列的对比图;(d)为降雨去趋势下径流序列 Q t 0 P t 、最高温度去趋势下的径流序列 Q t 0 T maxt ,风速去趋势下径流序列 Q t 0 u 2 t 与原始径流序列 Qt 0的对比图
Fig.6 Influence of changes in Pt, T maxt and u 2 t on Qt 0 changes
(a)、(b)、(c) show the comparison of the original series with detrended series of PtT maxtu 2 t, respectively; (d) shows the comparison of the original runoff with the recalculated runoff. The original runoff denoted as Qt 0, the runoff recalculated by detrended series of PtT maxtu 2 t denoted as Q t 0 P t , Q t 0 Tmaxt and Q t 0 u 2 t , respectively
[1] Nema P, Nema S, Roy P.An overview of global climate changing in current scenario and mitigation action[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2 329-2 336.
doi: 10.1016/j.rser.2012.01.044     URL    
[2] Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advances in hydro-meteorological forecast under changing environment[J]. Jaurnal of Hydraulic Engineering, 2018,49(1): 9-18.
[雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018,49(1): 9-18.]
[3] Zhang Qilin, Wang Zhanli, Wang Dongdong, et al. Advances in researches of the effects of grassland vegetationon soil erosion in Loess Plateau[J]. Advances in Earth Science,2017,32(10):1 093-1 101.
[张琪琳,王占礼,王栋栋,等.黄土高原草地植被对土壤侵蚀影响研究进展[J].地球科学进展,2017,32(10):1 093-1 101.]
doi: 10.11867/j.issn.1001-8166.2017.10.1093     URL    
[4] Chiew F H S, Teng J, Vaze J, et al. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method[J]. Water Resources Research, 2009, 45(10). DOI:10.1029/2008WR007338.
doi: 10.1029/2008WR007338     URL    
[5] Mango L M, Melesse A M, McClain M E, et al. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management[J]. Hydrology and Earth System Sciences, 2011, 15(7): 2 245-2 258.
doi: 10.5194/hess-15-2245-2011     URL    
[6] Feng Chang, Mao Dehua, Zhou Hui, et al. Impacts of climate and land use changes on runoff in the Lianshui Basin[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 395-406.
[冯畅,毛德华,周慧,等. 气候与土地利用变化对涟水流域径流的影响[J]. 冰川冻土, 2017, 39(2): 395-406.]
doi: 10.7522/j.issn.1000-0240.2017.0045     URL    
[7] Shi Peili, Li Wenhua.Influence of forest coverage change on hydrological process and watershed runoff[J]. Journal of Natural Resources, 2001,16(5):481-487.
[石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.]
doi: 10.3321/j.issn:1000-3037.2001.05.015     URL    
[8] Liu Xiaoyan, Liu Changming, Yang Shengtian, et al. Influences of shrubs-herbs-arbor vegetation coverage on the runoff based on the remote sensing data in Loess Plateau[J]. Acta Geographica Sinica, 2014,69(11): 1 595-1 603.
[刘晓燕, 刘昌明, 杨胜天, 等. 基于遥感的黄土高原林草植被变化对河川径流的影响分析[J]. 地理学报, 2014, 69(11): 1 595-1 603.]
doi: 10.11821/dlxb201411001     URL    
[9] He Zhibin, Du Jun, Chen Longfei, et al. Review on montane forest eco-hydrology in arid area[J]. Advances in Earth Science, 2016,31(10):1 078-1 089.
[何志斌,杜军,陈龙飞, 等. 干旱区山地森林生态水文研究进展[J].地球科学进展,2016,31(10):1 078-1 089.]
doi: 10.11867/j.issn.1001-8166.2016.10.1078     URL    
[10] Liu Changming, Zeng Yan.Research on impact of vegetation change to water generation[J]. China Water Conservancy, 2002,(10):112-117.
[刘昌明,曾燕.植被变化对产水量影响的研究[J].中国水利,2002,(10):112-117.]
doi: 10.3969/j.issn.1000-1123.2002.10.034     URL    
[11] Liang Wei, Bai Dan, Wang Feiyu, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau[J]. Water Resources Research, 2015, 51(8): 6 500-6 519.
doi: 10.1002/2014WR016589     URL    
[12] Shao Quanxi, Traylen A, Zhang Lu.Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration[J]. Water Resources Research, 2012, 48(3). DOI:10.1029/2010WR009610.
doi: 10.1029/2010WR009610     URL    
[13] Dou Haoyang, Zhao Xinyi.Climate change and its human dimensions based on GIS and meteorological statistics in Pearl River Delta, Southern China[J]. Meteorological Applications, 2011, 18(1): 111-122.
doi: 10.1002/met.219     URL    
[14] Mann H B.Non-parametric tests against trend[J]. Econometrica,1945, 13(3):245-259.
doi: 10.2307/1907187     URL    
[15] Kendall M G.Rank Correlation Measure[M]. London, UK: Charles Griffin, 1975.
[16] Xu Jijun, Yang Dawen, Lei Zhidong, et al. Long-term trend test of precipitation and runoff in the Yangtze River Basin[J]. Yangtze River, 2006,(9):63-67.
[许继军,杨大文,雷志栋,等.长江流域降水量和径流量长期变化趋势检验[J].人民长江,2006,(9):63-67.]
doi: 10.3969/j.issn.1001-4179.2006.09.022     URL    
[17] Yue Sheng, Pilon P, Cavadias G.Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259(1): 254-271.
doi: 10.1016/S0022-1694(01)00594-7     URL    
[18] Yue Sheng, Wang Chongyuan.Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6): 1-4.
doi: 10.1029/2001wr000861     URL    
[19] Wang Yuefeng, Chen Ying, Chen Xingwei.Runoff trend detection in the Minjiang River Basin with TFPW-MK method[J]. Science of Soil and Water Conservation, 2013,11(5):96-102.
[王跃峰,陈莹,陈兴伟.基于TFPW-MK法的闽江流域径流趋势研究[J].中国水土保持科学,2013,11(5):96-102.]
doi: 10.3969/j.issn.1672-3007.2013.05.015     URL    
[20] Blain G C.The influence of nonlinear trends on the power of the trend-free pre-whitening approach[J]. Acta Scientiarum Agronomy, 2015, 37(1): 21-28.
doi: 10.4025/actasciagron.v37i1.18199     URL    
[21] Li Chuanzhe, Wu Pute, Li Xiaolei, et al. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China[J]. Science of The Total Environment, 2017, 589: 165-172.
doi: 10.1016/j.scitotenv.2017.02.122     URL     pmid: 28258753
[22] Patterson L A, Lutz B, Doyle M W.Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA[J]. Water Resources Research, 2013, 49(11): 7 278-7 291.
doi: 10.1002/2013WR014618     URL    
[23] Budyko M I.Climate and Life[M]. New York: Academic Press, 1974.
[24] Xu Chongyu, Gong Lebing, Jiang Tong, et al. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment[J]. Journal of Hydrology, 2006, 327(1/2): 81-93.
doi: 10.1016/j.jhydrol.2005.11.029     URL    
[25] Fu Baopu.One the calculation of the evaporation from land surface[J]. Scientia Atmospherica Sinica, 1981,5(1):23-31.
[傅抱璞. 论陆面蒸发的计算[J].大气科学,1981, 5(1):23-31.]
doi: 10.3878/j.issn.1006-9895.1981.01.03     URL    
[26] Jiang Cong, Xiong Lihua, Wang Dingbao, et al. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters[J]. Journal of Hydrology, 2015, 522: 326-38.
doi: 10.1016/j.jhydrol.2014.12.060     URL    
[27] Chen Zhengjiang, Pu Xi'an. Comparative study of multiple linear regression analysis and stepwise regression analysis[J]. Journal of Mudan Jiang College of Education, 2016,(5):131-133.
[陈正江, 蒲西安.多元线性回归分析与逐步回归分析的比较研究[J].牡丹江教育学院学报,2016,(5):131-133.]
doi: 10.3969/j.issn.1009-2323.2016.05.063     URL    
[28] Yang Dawen, Shao Weiwei, Yeh P J F, et al. Impact of vegetation coverage on regional water balance in the nonhumid regions of China[J]. Water Resources Research, 2009, 45(7).DOI: 10.1029/2008WR006948.
doi: 10.1029/2008WR006948     URL    
[1] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[2] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[3] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[4] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[5] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[6] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[7] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[8] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[9] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[10] 陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文. 高寒区典型下垫面水文功能小流域观测试验研究[J]. 地球科学进展, 2014, 29(4): 507-514.
[11] 李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.
[12] 宋平, 刘元波, 刘燕春. 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 731-740.
[13] 王国庆,金君良,王金星,贺瑞敏, 刘翠善, 刘艳丽. 辽河流域径流对气候变化的响应特征研究[J]. 地球科学进展, 2011, 26(4): 433-440.
[14] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[15] 陈仁升,刘时银,康尔泗,韩海东,卿文武,王建. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9): 942-951.
阅读次数
全文


摘要