地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 531 -540. doi: 10.11867/j.issn.1001-8166.2014.04.0531

研究论文 上一篇    

黄河源区气候变化与GLDAS数据适用性评估
李霞 1, 2, 高艳红 1*, 王婉昭 3, 蓝永超 4, 许建伟 1, 2, 李凯 1, 2   
  1. 1. 中国科学院寒区旱区环境与工程研究所, 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 辽宁省气象科学研究所, 沈阳 辽宁 110015;
    4. 中国科学院寒区旱区环境与工程研究所, 内陆河流域生态水文重点实验室, 甘肃 兰州 730000
  • 收稿日期:2013-12-03 出版日期:2014-04-10
  • 基金资助:

    国家重大科学研究计划项目“青藏高原沙漠化对全球变化的响应”(编号:2013CB956004); 中国科学院百人计划项目“全球变化背景下青藏高原周边典型流域气候变化研究”(编号:41322033)资助.

Climate Change and Applicability of GLDAS in the Headwater of the Yellow River Basin

Li Xia 1,2, Gao Yanhong 1, Wang Wanzhao 3, Lan Yongchao 4, #br# Xu Jianwei 1,2, Li Kai 1,2   

  1. 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Liaoning Institute of Meteorological Sciences, Shenyang 110015, China;
    4. Key Laboratory of Ecohygrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2013-12-03 Online:2014-04-10 Published:2014-04-10

利用观测资料分析了1979—2010年黄河源区气温、降水量及流量变化; 验证了全球陆面同化系统(GLDAS)数据在黄河源区的适用性并用其分析了水循环变化特征。结果表明, GLDAS气温数据能够指示源区近30年尤其是近10年来气温升高及空间上从西向东逐渐升高的分布规律。GLDAS降水数据也能够描述源区降水量从东南部向西北部逐渐减少的空间分布特征。1979—2010年唐乃亥水文站年平均流量呈下降趋势, 但在近10年年平均流量有所回升。GLDAS中的CLM模式描述出了源区“先降后升”的水循环变化规律。尽管近10年来径流系数有所回升, 但是1979—2010年黄河源区径流系数整体呈下降趋势。

Changes of surface air temperature, precipitation and discharge in 1979-2010 are analyzed over the headwater of Yellow River Basin (HYR). Applicability of the Global Land Data Assimilation System (GLDAS) reanalysis data is evaluated compared to observations. Further, major variables of the water cycle in the HYR are analyzed using GLDAS. The followings are obtained. Significant warming has been observed in the HYR, particularly in recent 10 years. The surface air temperature is higher in eastern HYR than in western HYR. GLDAS agrees well with the observation in surface air temperature change and pattern. Precipitation increases gradually from northwest to southeast HYR. GLDAS matches well with mean precipitation distribution in 1979-2010, especially before 2000. Discharge at the Tangnag Station decreases in 1979-2010. Annual discharge is still under average level in the HYR although it increases after 2000. The runoff simulation in CLM matches observation at the Tangnag Station better than other models. Runoff coefficient shows a general decreasing trend in 1979-2010 despite the recovery after 2001.

中图分类号: 

[1] Ma Yaoming, Yao Tandong, Wang Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/ Tibet and CAMP/ Tibet[J]. Plateau Meteorology, 2006, 25(2):344-351. [马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibe与CAMP/ Tibet研究进展[J]. 高原气象, 2006, 25(2):344-351. ]
[2] Min X U, BaiSheng Y E, Zhao Qiudong, et al. Estimation of water balance in the source region of the Yellow River based on GRACE satellite data[J]. Journal of Arid Land, 2013, 5(3): 384-395, doi: 10. 1007/s40333-013-0169-8.
[3] Peng Wen, Gao Yanhong, Wang Wanzhao. Impact of diffferent initial soil conditions on the water cycle of Yellow River source region[J]. Advances in Earth Science, 2012, 27(11):1 252-1 261. [彭雯, 高艳红, 王婉昭. 土壤温湿状况对黄河源区水循环过程的影响[J]. 地球科学进展, 2012, 27(11):1 252-1 261. ]
[4] Wen Jun, Lan Yongchao, Su Zhongbo, et al. Advances in observation and modeling of land surface processes over the source region of the Yellow River[J]. Advances in Earth Science, 2011, 26(6): 575-585. [文军, 蓝永超, 苏中波, 等. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6):575-585. ]
[5] Xia Jun, Qiu Bing, Pan Xingyao, et al. Assessment of water resources vulnerability under climate change and human activities[J]. Advances in Earth Science, 2012, 27(4):443-451. [夏军, 邱冰, 潘兴瑶, 等. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展, 2012, 27(4): 443-451. ]
[6] Xu Zongxue, He Wanlin. Spatial and temporal characteristics and change trend of climatic elements in the headwater region of the Yellow River in recent 40 years[J]. Plateau Meteorology, 2006, 25(5):906-913. [徐宗学, 和宛琳. 近40 年黄河源区气候要素分布特征及变化趋势分析[J]. 高原气象, 2006, 25(5):906-913. ]
[7] Lan Yongchao, Lu Chengyang, La Chengfang, et al. The fact of climate shift to warm-humid in the the source regions of Yellow River and its hydrologic response[J]. Journal of Glaciology and Geocryology, 2013, 35(4):920-928. [蓝永超, 鲁承阳, 喇承芳, 等. 黄河源区气候向暖湿转变的观测事实及其水文响应[J]. 冰川冻土, 2013, 35(4):920-928. ]
[8] Lan Yongchao, Zhao Guohui, Zhang Yaonan, et al. Response of runoff in the source region of the Yellow River to climate warming[J]. Quaternary International, 2010, 226:60-65, doi:10. 1016/j. quaint. 2010. 03. 006.
[9] Hu Y, Maskey S, Uhlenbrook S. Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region[J]. Hydrology and Earth System Sciences Discussions, 2013, 17:2 501-2 514.
[10] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook. Downscaling daily precipitation over the Yellow River source region in China: A comparison of three statistical downscaling methods[J]. Theoretical and Applied Climatology, 2013 112:447-460, doi: 10. 1007/s00704-012-0745-4.
[11] Zhou Degang, Huang Ronghui. Response of water budget to recent climatic changes in the source region of the Yellow River[J]. Chinese Science Bulletin, 2012, 57(17):2 155-2 162.
[12] Zhao Guohui, Zhang Yaonan, Lan Yongchao. Annual runoff in the source regions of Yellow River:Long-term variation features and trend forecast[J]. Journal of Glaciology and Geocryology, 2010, 32(1):189-195. [赵国辉, 张耀南, 蓝永超. 黄河源区径流长期演变特征与趋势预测模型研究[J]. 冰川冻土, 2010, 32(1):189-195. ]
[13] Cao Yanping, Nan Zhuotong. Monitoring water storage variations in the Heihe River Basin by the GRACE gravity sateliite[J]. Remote Sensing Technology and Application, 2011, 26(6):719-727. [曹艳萍, 南卓铜. 利用GRACE重力卫星监测黑河流域水储量变化[J]. 遥感技术与应用, 2011, 26(6):719-727. ]
[14] Zhang Shifeng, Jia Shaofeng, Liu Changming. Change law of water circulation in the Yellow River source region and its influence[J]. Science in China(Series E), 2004, 34(Suppl. 1):117-125. [张士锋, 贾绍凤, 刘昌明. 黄河源区水循环变化规律及其影响[J]. 中国科学: E辑, 2004, 34 (增刊I ):117-125. ]
[15] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook, et al. Streamflow trends and climate linkages in the source region of the Yellow River, China[J]. Hydrological Processes, 2011, 25:3 399-3 411.
[16] Rodell M, Houser P R, Jambo R U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3):381-394.
[17] Wang Yujuan, Wang Shudong, Song Wenlong, et al. Application of GLDAS data to the potential evapotranspiration monitoring in Weihe River Basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(12):54-58. [王玉娟, 王树东, 宋文龙, 等. GLDAS 数据产品在渭河流域潜在蒸散发模拟中的应用研究[J]. 干旱区资源与环境, 2013, 27(12):54-58. ]
[18] Hua L R. README Docunment for Global Land Data Assimilation System Version 1(GLDAS-1)[EB/OL]. [2013-03-06]. http:∥ldas. gsfc. nasa. gov/gldas/ GLDASforcing. php, 15 March 2011.
[19] Wang Aihui, Zeng Xubin. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research, 2012, 117:D05102, doi:10. 1029/2011JD016553.
[20] Sun Guishan. Change analysis of precipitation and runoff in the Yellow River source region[J]. Journal of Water Resources Research, 2008, 29(3):22-25. [孙贵山. 黄河源区降水径流变化特性初步分析[J]. 水资源研究, 2008, 29(3):22-25. ]
[21] Liu Zhenxi, Liu Qiang, Zhang Shijun. Analysis about the causes of decreasing runoff of Tanag in the Yellow River source region[J]. Gansu Shuili Shuidian Jishu, 2008, 44(1):13-14. [刘振西, 刘强, 张世军. 黄河源区唐乃亥站径流持续减少的原因分析[J]. 甘肃水利水电技术, 2008, 44(1):13-14. ]
[22] Wang Wanzhao, Gao Yanhong, Xu Jianwei. Applicability of GLDAS and climate change in the Qinghai-Xizang Plateau and its surrounding arid area[J]. Plateau Meteorology, 2013, 32(3):635-645. [王婉昭, 高艳红, 徐建伟. 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013, 32(3):635-645. ]
[23] Zhou Chenchao, Jia Shaofeng, Yan Huayun, et al. Changing trend of water resources in Qinghai Province from 1956 to 2000[J]. Journal of Glaciology and Geocryology, 2005, 27(3):432-437. [周陈超, 贾绍凤, 燕华云, 等. 近50 a 以来青海省水资源变化趋势分析[J]. 冰川冻土, 2005, 27(3):432-437. ]
[24] Zhang Lu, Zhou Yue. Mann-Kendall test and applying it in time order analyzing of river suspended sand concentration[J]. Environmental Protection of Xinjiang, 2007, 29(3):19-22. [张璐, 周跃. Mann- Kendall 检验及其在河流悬沙浓度时间序列分析中的运用[J]. 新疆环境保护, 2007, 29(3):19-22. ]
[25] Xin Huijuan, He Yuanqing, Zhang Tao, et al. The features of climate variation and glacier response in Mt. Yunglong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11):1 257-1 268. [辛惠娟, 何元庆, 张涛, 等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28(11):1 257-1 268.
[26] Liu Guangsheng, Wang Genxu, Hu Hongchang, et al. Climate change characteristics in the Source Regions of the Yangtze River and Yellow River over the past 45 years[J]. Resources Science, 2010, 32(8):1 486-1 492. [刘光生, 王根绪, 胡宏昌, 等. 长江黄河源区近45 年气候变化特征分析[J]. 资源科学, 2010, 32(8):1 486-1 492. ]
[27] Lü Shaoning, Li Dongliang, Wen Jun, et al. Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang Plateau under global warming[J]. Plateau Meteorology, 2010, 29(6):1 378-1 385. [吕少宁, 李栋梁, 文军. 全球变暖背景下青藏高原气温周期变化与突变分析[J]. 高原气象, 2010, 29(6):1 378-1 385. ]
[28] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook. Trends in temperature and rainfall extremes in the Yellow River source region, China[J]. Climatic Change, 2012, 110:403-429, doi:10. 1007/s10584-011-0056-2.
[29] Niu Yuguo, Zhang Xuecheng. Present condition of water environment and sustainable utilization of water resources of the Yellow River Basin[J]. Yellow River, 2005, 27(3):31-37. [牛玉国, 张学成. 黄河源区水文水资源情势变化及其成因初析[J]. 人民黄河, 2005, 27(3):31-37. ]
[30] Wang Huan, Li Dongliang. Research progress on variations and effectors of the runoff in the source region of the Yellow River[J]. Plateau and Mountain Meteorology Research, 2013, 33(2): 93-99. [王欢, 李栋梁. 黄河源区径流量变化特征及其影响因子研究进展[J]. 高原山地气象研究, 2013, 33(2):93-99. ]
[31] Gong Aixi, Zhang Dongdong, Feng Ping. Variation trend of annual runoff coefficient of Daqinghe River Basin and study on its impact[J]. Water Resources and Hydropower Engineering, 2012, 43(6):1-4. [宫爱玺, 张冬冬, 冯平. 大清河流域年径流系数变化趋势及影响因素分析[J]. 水利水电技术, 2012, 43(6):1-4. ]
[32] Mahé G, Paturel J E. 1896-2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers[J]. Comptes Rendus Geoscience, 2009, 341(7): 538-546.
[33] Wang Zhaoli, Chen Xiaohong, Yang Tao. Runoff coefficients variation and its influencing factor in Dongjiang River Basin[J]. Water Resources and Power, 2010, 28(8):10-13. [王兆礼, 陈晓宏, 杨涛. 东江流域径流系数变化特征及影响因素分析[J]. 水电能源科学, 2010, 28(8):10-13. ]
[1] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[2] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[5] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[6] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[7] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[8] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[9] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[10] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[11] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[12] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[13] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[14] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[15] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
阅读次数
全文


摘要