Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (4): 531-540    DOI: 10.11867/j.issn.1001-8166.2014.04.0531
研究论文     
黄河源区气候变化与GLDAS数据适用性评估
李霞1, 2, 高艳红1*, 王婉昭3, 蓝永超4, 许建伟1, 2, 李凯1, 2
1. 中国科学院寒区旱区环境与工程研究所, 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 辽宁省气象科学研究所, 沈阳 辽宁 110015;
4. 中国科学院寒区旱区环境与工程研究所, 内陆河流域生态水文重点实验室, 甘肃 兰州 730000
Climate Change and Applicability of GLDAS in the Headwater of the Yellow River Basin
Li Xia1,2, Gao Yanhong1, Wang Wanzhao3, Lan Yongchao4, #br# Xu Jianwei1,2, Li Kai1,2
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Liaoning Institute of Meteorological Sciences, Shenyang 110015, China;
4. Key Laboratory of Ecohygrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(5735 KB)   HTML
摘要:

利用观测资料分析了1979—2010年黄河源区气温、降水量及流量变化; 验证了全球陆面同化系统(GLDAS)数据在黄河源区的适用性并用其分析了水循环变化特征。结果表明, GLDAS气温数据能够指示源区近30年尤其是近10年来气温升高及空间上从西向东逐渐升高的分布规律。GLDAS降水数据也能够描述源区降水量从东南部向西北部逐渐减少的空间分布特征。1979—2010年唐乃亥水文站年平均流量呈下降趋势, 但在近10年年平均流量有所回升。GLDAS中的CLM模式描述出了源区“先降后升”的水循环变化规律。尽管近10年来径流系数有所回升, 但是1979—2010年黄河源区径流系数整体呈下降趋势。

关键词: 降水水循环径流气温    
Abstract:

Changes of surface air temperature, precipitation and discharge in 1979-2010 are analyzed over the headwater of Yellow River Basin (HYR). Applicability of the Global Land Data Assimilation System (GLDAS) reanalysis data is evaluated compared to observations. Further, major variables of the water cycle in the HYR are analyzed using GLDAS. The followings are obtained. Significant warming has been observed in the HYR, particularly in recent 10 years. The surface air temperature is higher in eastern HYR than in western HYR. GLDAS agrees well with the observation in surface air temperature change and pattern. Precipitation increases gradually from northwest to southeast HYR. GLDAS matches well with mean precipitation distribution in 1979-2010, especially before 2000. Discharge at the Tangnag Station decreases in 1979-2010. Annual discharge is still under average level in the HYR although it increases after 2000. The runoff simulation in CLM matches observation at the Tangnag Station better than other models. Runoff coefficient shows a general decreasing trend in 1979-2010 despite the recovery after 2001.

Key words: Precipitation    Water cycle    Runoff    Air temperature
收稿日期: 2013-12-03 出版日期: 2014-04-10
:  P467  
基金资助:

国家重大科学研究计划项目“青藏高原沙漠化对全球变化的响应”(编号:2013CB956004); 中国科学院百人计划项目“全球变化背景下青藏高原周边典型流域气候变化研究”(编号:41322033)资助.

作者简介: 李霞 (1988-), 女, 甘肃通渭人, 硕士研究生, 主要从事气候变化研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蓝永超
高艳红
王婉昭
许建伟
李霞
李凯

引用本文:

李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.

Li Xia, Gao Yanhong, Wang Wanzhao, Lan Yongchao, Xu Jianwei, Li Kai. Climate Change and Applicability of GLDAS in the Headwater of the Yellow River Basin. Advances in Earth Science, 2014, 29(4): 531-540.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.04.0531        http://www.adearth.ac.cn/CN/Y2014/V29/I4/531

[1] Ma Yaoming, Yao Tandong, Wang Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/ Tibet and CAMP/ Tibet[J]. Plateau Meteorology, 2006, 25(2):344-351. [马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibe与CAMP/ Tibet研究进展[J]. 高原气象, 2006, 25(2):344-351. ]
[2] Min X U, BaiSheng Y E, Zhao Qiudong, et al. Estimation of water balance in the source region of the Yellow River based on GRACE satellite data[J]. Journal of Arid Land, 2013, 5(3): 384-395, doi: 10. 1007/s40333-013-0169-8.
[3] Peng Wen, Gao Yanhong, Wang Wanzhao. Impact of diffferent initial soil conditions on the water cycle of Yellow River source region[J]. Advances in Earth Science, 2012, 27(11):1 252-1 261. [彭雯, 高艳红, 王婉昭. 土壤温湿状况对黄河源区水循环过程的影响[J]. 地球科学进展, 2012, 27(11):1 252-1 261. ]
[4] Wen Jun, Lan Yongchao, Su Zhongbo, et al. Advances in observation and modeling of land surface processes over the source region of the Yellow River[J]. Advances in Earth Science, 2011, 26(6): 575-585. [文军, 蓝永超, 苏中波, 等. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6):575-585. ]
[5] Xia Jun, Qiu Bing, Pan Xingyao, et al. Assessment of water resources vulnerability under climate change and human activities[J]. Advances in Earth Science, 2012, 27(4):443-451. [夏军, 邱冰, 潘兴瑶, 等. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展, 2012, 27(4): 443-451. ]
[6] Xu Zongxue, He Wanlin. Spatial and temporal characteristics and change trend of climatic elements in the headwater region of the Yellow River in recent 40 years[J]. Plateau Meteorology, 2006, 25(5):906-913. [徐宗学, 和宛琳. 近40 年黄河源区气候要素分布特征及变化趋势分析[J]. 高原气象, 2006, 25(5):906-913. ]
[7] Lan Yongchao, Lu Chengyang, La Chengfang, et al. The fact of climate shift to warm-humid in the the source regions of Yellow River and its hydrologic response[J]. Journal of Glaciology and Geocryology, 2013, 35(4):920-928. [蓝永超, 鲁承阳, 喇承芳, 等. 黄河源区气候向暖湿转变的观测事实及其水文响应[J]. 冰川冻土, 2013, 35(4):920-928. ]
[8] Lan Yongchao, Zhao Guohui, Zhang Yaonan, et al. Response of runoff in the source region of the Yellow River to climate warming[J]. Quaternary International, 2010, 226:60-65, doi:10. 1016/j. quaint. 2010. 03. 006.
[9] Hu Y, Maskey S, Uhlenbrook S. Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region[J]. Hydrology and Earth System Sciences Discussions, 2013, 17:2 501-2 514.
[10] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook. Downscaling daily precipitation over the Yellow River source region in China: A comparison of three statistical downscaling methods[J]. Theoretical and Applied Climatology, 2013 112:447-460, doi: 10. 1007/s00704-012-0745-4.
[11] Zhou Degang, Huang Ronghui. Response of water budget to recent climatic changes in the source region of the Yellow River[J]. Chinese Science Bulletin, 2012, 57(17):2 155-2 162.
[12] Zhao Guohui, Zhang Yaonan, Lan Yongchao. Annual runoff in the source regions of Yellow River:Long-term variation features and trend forecast[J]. Journal of Glaciology and Geocryology, 2010, 32(1):189-195. [赵国辉, 张耀南, 蓝永超. 黄河源区径流长期演变特征与趋势预测模型研究[J]. 冰川冻土, 2010, 32(1):189-195. ]
[13] Cao Yanping, Nan Zhuotong. Monitoring water storage variations in the Heihe River Basin by the GRACE gravity sateliite[J]. Remote Sensing Technology and Application, 2011, 26(6):719-727. [曹艳萍, 南卓铜. 利用GRACE重力卫星监测黑河流域水储量变化[J]. 遥感技术与应用, 2011, 26(6):719-727. ]
[14] Zhang Shifeng, Jia Shaofeng, Liu Changming. Change law of water circulation in the Yellow River source region and its influence[J]. Science in China(Series E), 2004, 34(Suppl. 1):117-125. [张士锋, 贾绍凤, 刘昌明. 黄河源区水循环变化规律及其影响[J]. 中国科学: E辑, 2004, 34 (增刊I ):117-125. ]
[15] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook, et al. Streamflow trends and climate linkages in the source region of the Yellow River, China[J]. Hydrological Processes, 2011, 25:3 399-3 411.
[16] Rodell M, Houser P R, Jambo R U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3):381-394.
[17] Wang Yujuan, Wang Shudong, Song Wenlong, et al. Application of GLDAS data to the potential evapotranspiration monitoring in Weihe River Basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(12):54-58. [王玉娟, 王树东, 宋文龙, 等. GLDAS 数据产品在渭河流域潜在蒸散发模拟中的应用研究[J]. 干旱区资源与环境, 2013, 27(12):54-58. ]
[18] Hua L R. README Docunment for Global Land Data Assimilation System Version 1(GLDAS-1)[EB/OL]. [2013-03-06]. http:∥ldas. gsfc. nasa. gov/gldas/ GLDASforcing. php, 15 March 2011.
[19] Wang Aihui, Zeng Xubin. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research, 2012, 117:D05102, doi:10. 1029/2011JD016553.
[20] Sun Guishan. Change analysis of precipitation and runoff in the Yellow River source region[J]. Journal of Water Resources Research, 2008, 29(3):22-25. [孙贵山. 黄河源区降水径流变化特性初步分析[J]. 水资源研究, 2008, 29(3):22-25. ]
[21] Liu Zhenxi, Liu Qiang, Zhang Shijun. Analysis about the causes of decreasing runoff of Tanag in the Yellow River source region[J]. Gansu Shuili Shuidian Jishu, 2008, 44(1):13-14. [刘振西, 刘强, 张世军. 黄河源区唐乃亥站径流持续减少的原因分析[J]. 甘肃水利水电技术, 2008, 44(1):13-14. ]
[22] Wang Wanzhao, Gao Yanhong, Xu Jianwei. Applicability of GLDAS and climate change in the Qinghai-Xizang Plateau and its surrounding arid area[J]. Plateau Meteorology, 2013, 32(3):635-645. [王婉昭, 高艳红, 徐建伟. 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013, 32(3):635-645. ]
[23] Zhou Chenchao, Jia Shaofeng, Yan Huayun, et al. Changing trend of water resources in Qinghai Province from 1956 to 2000[J]. Journal of Glaciology and Geocryology, 2005, 27(3):432-437. [周陈超, 贾绍凤, 燕华云, 等. 近50 a 以来青海省水资源变化趋势分析[J]. 冰川冻土, 2005, 27(3):432-437. ]
[24] Zhang Lu, Zhou Yue. Mann-Kendall test and applying it in time order analyzing of river suspended sand concentration[J]. Environmental Protection of Xinjiang, 2007, 29(3):19-22. [张璐, 周跃. Mann- Kendall 检验及其在河流悬沙浓度时间序列分析中的运用[J]. 新疆环境保护, 2007, 29(3):19-22. ]
[25] Xin Huijuan, He Yuanqing, Zhang Tao, et al. The features of climate variation and glacier response in Mt. Yunglong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11):1 257-1 268. [辛惠娟, 何元庆, 张涛, 等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28(11):1 257-1 268.
[26] Liu Guangsheng, Wang Genxu, Hu Hongchang, et al. Climate change characteristics in the Source Regions of the Yangtze River and Yellow River over the past 45 years[J]. Resources Science, 2010, 32(8):1 486-1 492. [刘光生, 王根绪, 胡宏昌, 等. 长江黄河源区近45 年气候变化特征分析[J]. 资源科学, 2010, 32(8):1 486-1 492. ]
[27] Lü Shaoning, Li Dongliang, Wen Jun, et al. Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang Plateau under global warming[J]. Plateau Meteorology, 2010, 29(6):1 378-1 385. [吕少宁, 李栋梁, 文军. 全球变暖背景下青藏高原气温周期变化与突变分析[J]. 高原气象, 2010, 29(6):1 378-1 385. ]
[28] Hu Yurong, Shreedhar Maskey, Stefan Uhlenbrook. Trends in temperature and rainfall extremes in the Yellow River source region, China[J]. Climatic Change, 2012, 110:403-429, doi:10. 1007/s10584-011-0056-2.
[29] Niu Yuguo, Zhang Xuecheng. Present condition of water environment and sustainable utilization of water resources of the Yellow River Basin[J]. Yellow River, 2005, 27(3):31-37. [牛玉国, 张学成. 黄河源区水文水资源情势变化及其成因初析[J]. 人民黄河, 2005, 27(3):31-37. ]
[30] Wang Huan, Li Dongliang. Research progress on variations and effectors of the runoff in the source region of the Yellow River[J]. Plateau and Mountain Meteorology Research, 2013, 33(2): 93-99. [王欢, 李栋梁. 黄河源区径流量变化特征及其影响因子研究进展[J]. 高原山地气象研究, 2013, 33(2):93-99. ]
[31] Gong Aixi, Zhang Dongdong, Feng Ping. Variation trend of annual runoff coefficient of Daqinghe River Basin and study on its impact[J]. Water Resources and Hydropower Engineering, 2012, 43(6):1-4. [宫爱玺, 张冬冬, 冯平. 大清河流域年径流系数变化趋势及影响因素分析[J]. 水利水电技术, 2012, 43(6):1-4. ]
[32] Mahé G, Paturel J E. 1896-2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers[J]. Comptes Rendus Geoscience, 2009, 341(7): 538-546.
[33] Wang Zhaoli, Chen Xiaohong, Yang Tao. Runoff coefficients variation and its influencing factor in Dongjiang River Basin[J]. Water Resources and Power, 2010, 28(8):10-13. [王兆礼, 陈晓宏, 杨涛. 东江流域径流系数变化特征及影响因素分析[J]. 水电能源科学, 2010, 28(8):10-13. ]
[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[3] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[4] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[5] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[6] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[7] 王坚红, 丁晓敏, 薛峰, 苗春生. 气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究[J]. 地球科学进展, 2017, 32(2): 160-173.
[8] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[9] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[10] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[11] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[12] 董国庆, 李丽平, 郑广芬. 宁夏近53年冬季气温变化趋势及对农业的影响[J]. 地球科学进展, 2016, 31(11): 1172-1181.
[13] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[14] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[15] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.