地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 497 -512. doi: 10.11867/j.issn.1001-8166.2020.022

生态水文学理论与实践 上一篇    下一篇

城市化对地下水水量、水质与水热变化的影响及其对策分析
黄婉彬( ),鄢春华,张晓楠,邱国玉( )   
  1. 北京大学深圳研究生院环境与能源学院,广东 深圳 518055
  • 收稿日期:2020-01-02 修回日期:2020-02-27 出版日期:2020-05-10
  • 通讯作者: 邱国玉 E-mail:hwanbin2018@pku.edu.cn;qiugy@pkusz.edu.cn
  • 基金资助:
    深圳市科技计划基础研究(学科布局)项目“飞行智能环境监测机器人研究”(JCYJ20180504165440088)

The Impact of Urbanization on Groundwater Quantity, Quality, Hydrothermal Changes and Its Countermeasures

Wanbin Huang( ),Chunhua Yan,Xiaonan Zhang,Guoyu Qiu( )   

  1. School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055, China
  • Received:2020-01-02 Revised:2020-02-27 Online:2020-05-10 Published:2020-06-05
  • Contact: Guoyu Qiu E-mail:hwanbin2018@pku.edu.cn;qiugy@pkusz.edu.cn
  • About author:Huang Wanbin (1997-), female, Putian City, Fujian Province, Master student. Research areas include urban ecological hydrology. E-mail: hwanbin2018@pku.edu.cn
  • Supported by:
    the Shenzhen Science and Technology Project “Research on flying intelligent environmental monitoring robot”(JCYJ20180504165440088)

地下水作为全世界近1/3城市人口的饮用水源,在城市化发展过程中起着战略性作用。针对水资源需求量最大、地下水污染负荷最重、地下工程开发强度最大的城市地区,梳理了城镇化背景下城市地区面临的地下水文循环过程变异、地下水污染、地下水“热岛效应”等生态水文问题,系统分析了城市地下水发生水量、水质、水热变化的机理,并揭示了地下水量、水质、水热问题的内在联系。研究发现,城市化引起的土地利用与覆被变化是导致地下水文循环过程变异的主要原因;城镇化建设和生活生产废物的污染负荷加剧了地下水质的恶化;城市化引起的垂直热通量的增加促进了地下水升温。通过总结城镇化地区地下水面临的生态水文问题及成因,提出应加快地下水污染防治技术攻关、完善地下水污染区域调控策略、建立城市地下水资源评价方法与体系、优化地下水资源配置,为保障城市水安全、建设生态文明城市并进一步促进经济社会的可持续发展提供理论依据和技术支撑。

Groundwater, as a drinking water source for nearly one third of the world’s urban population, plays a strategic role in the development of urbanization. The object of this study is urban areas with the largest demand for water resources, the heaviest load of groundwater pollution and the most intense development of underground projects. This study sorted out the eco-hydrological problems such as the variation of the groundwater hydrological process, the groundwater pollution, and the urban heat island of groundwater in urban areas under the background of urbanization. Furthermore, the mechanism of changes in the quantity, quality and heat of groundwater was also systematically analyzed, and the intrinsic interaction among these three factors was revealed. The study showed that changes in land use and land cover caused by the urbanization are the main reasons for the variation of groundwater hydrological process. The pollution load of urbanization construction and domestic production waste has aggravated the deterioration of groundwater quality. The increase in vertical heat flux caused by urbanization gives rise to the warming of groundwater. By summarizing the eco-hydrological problems and causes of groundwater in urbanized areas, several suggestions were proposed: Establishing the evaluation method and system of urban groundwater resources; Speeding up the technological breakthroughs of groundwater pollution control; Improving the regional control strategies for groundwater pollution; Optimizing the allocation of groundwater resources. This study will provide the theoretical basis and technical support for ensuring urban water safety, building ecological civilized cities and further promoting the sustainable development of economy and society.

中图分类号: 

图1 20002018年中国地下水资源总量及其占比[ 28 ]
Fig.1 The amount of groundwater resources and proportions of the total water resources in China from 2000 to 2018[ 28 ]
图2 城市化对地下水文过程的影响示意[ 15 , 19 ]
Fig.2 Schematic diagram for the effects of urbanization on groundwater hydrological process[ 15 , 19 ]
图3 城市地区潜在的人为热源及天然热源[ 109 ]
Fig.3 Potential anthropogenic and natural heat sources in urban areas[ 109 ]
图4 城市化地区地下水量、水质和水热问题及其相互作用关系
Fig.4 Interactions among quantity, quality and energy of groundwater on urban area
1 Mcdonald R I, Green P P, Balk D, et al. Urban growth, climate change, and freshwater availability[J]. Proceedings of the National Academy of Sciences, 2011, 108(15): 6 312-6 317.
2 Mcdonald R I, Weber K, Padowski J, et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure[J]. Global Environmental Change, 2014, 27: 96-105.
3 UN-DESA. World Population Prospects 2018[DB/OL]. [2019-12-30]. .
URL    
4 Chen J, Li J, Zhang Z, et al. Long-term groundwater variations in Northwest India from satellite gravity measurements[J]. Global and Planetary Change, 2014, 116: 130-138.
5 Howard K W F. Sustainable cities and the groundwater governance challenge[J]. Environmental Earth Sciences, 2015, 73(6): 2 543-2 554.
6 Zhang Renquan, Liang Xing, Jin Menggui, et al. The trends in contemporary hydrogeology[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 51-56.
张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005, 32(1): 51-56.
7 Song Xiaomeng, Zhang Jianyun, Zhan Chesheng, et al. Review for impacts of climate change and human activities on water cycle[J]. Journal of Hydraulic Engineering, 2013, 44(7): 779-790.
宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013, 44(7): 779-790.
8 Zhao Wei, Ma Jinzhu, He Jianhua. Groundwater recharge and geochemical evolution in the Dunhuang Basin of Danghe River, northwest China[J]. Arid Land Geography, 2015, 38(6): 1 133-1 141.
赵玮, 马金珠, 何建华. 党河流域敦煌盆地地下水补给与演化研究[J]. 干旱区地理, 2015, 38(6): 1 133-1 141.
9 Wang Wenke, Gong Chengcheng, Zhang Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7): 702-718.
王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
10 Ju Fanfan, Ma Teng, Gu Xu. The effect of spatial urbanization on the characteristics of shallow karst groundwater in Shuicheng Basin[J]. Journal of Agricultural Resources and Environment, 2020, 37(1): 123-134.
巨凡凡, 马腾, 顾栩. 水城盆地空间城镇化对浅层岩溶地下水特征的影响[J]. 农业资源与环境学报, 2020, 37(1): 123-134.
11 Shi Jiansheng, Li Guomin, Liang Xing, et al. Evolution mechanism and control of groundwater in the north China Plain[J]. Acta Geoscientica Sinica, 2014, 35(5): 527-534.
石建省, 李国敏, 梁杏, 等. 华北平原地下水演变机制与调控[J]. 地球学报, 2014(5):527-534.
12 Zhai Jiaqi, Zhao Yong, Pei Yuansheng. Drive mechanism of urbanization on regional water cycle[J]. Water Resources and Hydropower Engineering, 2011, 42(11): 6-9.
翟家齐, 赵勇, 裴源生. 城市化对区域水循环的驱动机制分析[J]. 水利水电技术, 2011, 42(11): 6-9.
13 Klove B, Ala-Aho P, Bertrand G, et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends[J]. Environmental Science & Policy, 2011, 14(7): 770-781.
14 Xia Jun, Zhang Yin, Liang Changmei, et al. Review on urban water models[J]. Engineering Journal of Wuhan University, 2018, 51(2): 95-105.
夏军, 张印, 梁昌梅, 等. 城市雨洪模型研究综述[J]. 武汉大学学报:工学版, 2018, 51(2): 95-105.
15 Zhang Jianyun, Song Xiaomeng, Wang Guoqing, et al. Development and challenges of urban hydrology in a changing environment: I: Hydrological response to urbanization[J]. Advances in Water Science, 2014, 25(4): 594-605.
张建云, 宋晓猛, 王国庆, 等. 变化环境下城市水文学的发展与挑战——I.城市水文效应[J]. 水科学进展, 2014, 25(4): 594-605.
16 Eshtawi T, Evers M, Tischbein B. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff[J]. Hydrological Sciences Journal, 2015, 61(5): 826-843.
17 Han D, Currell M J, Cao G, et al. Alterations to groundwater recharge due to anthropogenic landscape change[J]. Journal of Hydrology, 2017, 554: 524-537.
18 Garcia-Fresca B, Sharp J M. Hydrogeologic considerations of urban development: Urban-induced recharge[J]. Reviews in Engineering Geology, 2005, 16: 123-136.
19 Michael O’Driscoll, Sandra C, Anne J, et al. Urbanization effects on watershed hydrology and in-stream processes in the southern united states[J]. Water, 2010, 2(3): 605-648.
20 Shepherd J M. A review of current investigations of urban-induced rainfall and recommendations for the future[J]. Earth Interactions, 2005, 9(12): 1-27.
21 Xu Guanglai, Xu Youpeng, Xu Hongliang. Advance in hydrologic progress response to urbanization[J]. Journal of Natural Resources, 2010, 5 (12): 2 171-2 178.
徐光来, 许有鹏, 徐宏亮. 城市化水文效应研究进展[J]. 自然资源学报, 2010, 5 (12): 2 171-2 178.
22 Zheng Yuhu. A Study of the Relationship Between River and Groundwater and Groundwater Quality Characteristics Near River in Zhongmu County[D]. Nanjing: Nanjing University, 2015.
郑玉虎. 中牟县河流和地下水补排关系及河流附近地下水水质特征研究[D]. 南京: 南京大学, 2015.
23 Yu Kaining. The impact of urbanization on groundwater recharge: A case study of Shijiazhuang City[J]. Acta Geoscientia Sinica, 2001,22(2):80-83.
于开宁. 城市化对地下水补给的影响——以石家庄市为例[J]. 地球学报, 2001,22(2):80-83.
24 Zhao Wenzhi, Zhou Hong, Liu Hu. Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 908-918.
赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
25 Wang Sijia, Liu Hu, Zhao Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: A review[J]. Advances in Earth Science, 2019, 34(2): 210-223.
王思佳, 刘鹄, 赵文智, 等. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
26 Lu Chuiyu, Sun Qingyan, Li Hui, et al. Estimation of groundwater recharge in arid and semi-arid areas based on water cycle simulation[J]. Journal of Hydraulic Engineering, 2014, 45(6): 701-711.
陆垂裕, 孙青言, 李慧, 等. 基于水循环模拟的干旱半干旱地区地下水补给评价[J]. 水利学报, 2014, 45(6): 701-711.
27 Li Xuan, Shu Longcang, Chen Xunhong. Comparison and analysis of groundwater resources exploitation and utilization between China and USA[J]. Hydrogeology & Engineering Geology, 2016, 43(2): 37-43.
李璇, 束龙仓, Chen Xunhong. 中美地下水资源开发利用对比分析[J]. 水文地质工程地质, 2016, 43(2): 37-43.
28 Ministry of Water Resources of the People’s Republic of China. 2000-2018 Reports on the State of the Water Resources in China[R]. Beijing: Ministry of Water Resources, 2019.
中华人民共和国水利部. 2000—2018年中国水资源公报[R]. 北京: 水利部, 2019.
29 Department of Water Resources of Ministry of Water Resources, Nanjing Hydraulic Research Institute. Development and Utilization of Groundwater Resources in China in the Early 21st Century[M]. Beijing: China Water & Power Press, 2004.
水利部水资源司, 南京水利科学研究院. 21世纪初期中国地下水资源开发利用[M]. 北京: 中国水利水电出版社, 2004.
30 Wang Yi'nan. Solving the constraints of water shortage is an urgent task for the construction of ecological civilization and the maintenance of national security[J]. China Economic Weekly, 2018,(25): 80-85.
王亦楠.解决水资源短缺的制约是生态文明建设和维护国家安全的当务之急[J]. 中国经济周刊, 2018,(25): 80-85.
31 Zhang Zonghu, Shen Zhaoli. Evolution and development of groundwater environment in North China Plain under human activities[J]. Acta Geoscientia Sinica, 1997, 18(4): 337-344.
张宗祜, 沈照理. 人类活动影响下华北平原地下水环境的演化与发展[J]. 地球学报, 1997, 18(4): 337-344.
32 Zhou Zhifang, Zheng Hu, Zhuang Chao. Study on the unrecoverable depletion of groundwater resource[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1 458-1 463.
周志芳, 郑虎, 庄超. 论地下水资源的永久性消耗量[J]. 水利学报, 2014, 45(12): 1 458-1 463.
33 Qiu Guoyu, Zhang Xiaonan. China's urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science, 2019, 34(6): 640-649.
邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649.
34 Schirmer M, Leschik S, Musolff A. Current research in urban hydrogeology—A review[J]. Advances in Water Resources, 2012, 51: 280-291.
35 Wang Genxu, Yang Lingyuan, Chen Ling, et al. Impacts of land use changes on groundwater resources in the Heihe River Basin[J]. Acta Geographica Sinica, 2005, 60(3): 456-466.
王根绪, 杨玲媛, 陈玲, 等. 黑河流域土地利用变化对地下水资源的影响[J]. 地理学报, 2005, 60(3): 456-466.
36 Ding Wenhui. Effect of Land Use and Cover Change on Groundwater in Arid Area—Case Study of Heihe Middle Reaches[D]. Lanzhou: Northwest Normal University, 2006.
丁文晖. 干旱区土地利用/覆盖变化的地下水水文效应——以黑河中游甘州、临泽、高台为例[D]. 兰州: 西北师范大学, 2006.
37 Chinese Academy of Sciences. Groundwater Science[M]. Beijing: Science Press, 2018.
中国科学院. 地下水科学[M]. 北京: 科学出版社, 2018.
38 Ministry of Ecology and Environment of the People’s Republic of China. 2018 Report on the State of the Environment in China[R]. Beijing: Ministry of Ecology and Environment, 2018.
中华人民共和国生态环境部. 2018年中国生态环境状况公报[R].北京: 生态环境部, 2018.
39 Wang Qiong, Tan Xiuyi, Chen Junfeng. Current situation and research progress of groundwater pollution in China[J]. Environment Science and Management, 2012, 37(Suppl.1): 52-56.
王琼, 谭秀益, 陈峻峰. 中国地下水污染现状分析及研究进展[J]. 环境科学与管理, 2012, 37(增刊1): 52-56.
40 Wei Runchu, Xiao Changlai, Liang Xiujuan. Spatio-temporal evolution of groundwater pollution in the urban areas of Jilin City[J]. China Environmental Science, 2014, 34(2): 417-423.
危润初, 肖长来, 梁秀娟. 吉林市城区地下水污染时空演化[J]. 中国环境科学, 2014, 34(2): 417-423.
41 Zhang Yali, Zhang Yizhang, Zhang Yuan, et al. Characteristics of nitrate in surface water and groundwater in the Hun River Basin[J]. China Environmental Science, 2014, 34(1): 170-177.
张亚丽, 张依章, 张远, 等. 浑河流域地表水和地下水氮污染特征研究[J]. 中国环境科学, 2014, 34(1): 170-177.
42 Diao Xuxiao, Sun Changhong, Chen Shufeng, et al. Progress in research on contamination prevention of urban groundwater[J]. Technology of Water Treatment, 2015, 41(9): 14-18.
刁徐笑, 孙长虹, 陈淑峰, 等. 城市地下水污染防治研究进展[J]. 水处理技术, 2015, 41(9): 14-18.
43 Liu Fei, Wang Suming, Chen Honghan. Progress of investigation and evaluation on groundwater organic contaminants in western countries[J]. Geological Bulletin of China, 2010, 29(6): 907-917.
刘菲, 王苏明, 陈鸿汉. 欧美地下水有机污染调查评价进展[J]. 地质通报, 2010, 29(6): 907-917.
44 Petrie B,Barden R,Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for futuremonitoring[J]. Water Research, 2015, 72: 3-27.
45 Gao Cunrong. Research on groundwater organic contamination characteristics in 69 cities of China[J]. Acta Geoscientia Sinica, 2011, 32(5): 581-591.
高存荣. 我国69个城市地下水有机污染特征研究[J]. 地球学报, 2011, 32(5): 581-591.
46 Stuart M, Lapworth D, Crane E, et al. Review of risk from potential emerging contaminants in UK groundwater[J]. Science of the Total Environment, 2012, 416: 1-21.
47 Jurado A, Vàzquez-Su?é E, Carrera J, et al. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context[J]. Science of the Total Environment, 2012, 440: 82-94.
48 Wang Shan, Sun Jichao, Zhang Hongda, et al. Status and countermeasures of organic pollution in water environment in China[J]. Marine Geology Letters, 2005, 21(10): 5-10.
汪珊, 孙继朝, 张宏达, 等. 我国水环境有机污染现状与防治对策[J].海洋地质动态, 2005, 21(10): 5-10.
49 Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6 772-6 782.
50 Nassef M, Kim S G, Seki M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J]. Chemosphere, 2010, 79 (9): 966-973.
51 Liu Feng, Tao Ran, Ying Guangguo, et al. Advance in environmental fate and ecological effects of antibiotics[J]. Acta Ecologica Sinica, 2010, 30(16): 4 503-4 511.
刘锋, 陶然, 应光国, 等. 抗生素的环境归宿与生态效应研究进展[J]. 生态学报, 2010, 30(16): 4 503-4 511.
52 Song Yanmin, Zhou Lianning, Hao Wenlong, et al. Pollution status and related research progress of perfluorinated compounds[J]. Environmental Engineering, 2017, 35(10): 82-86.
宋彦敏, 周连宁, 郝文龙, 等. 全氟化合物的污染现状及国内外研究进展[J]. 环境工程, 2017, 35(10): 82-86.
53 Zhang Yifeng, Zhao Lixia, Shan Guoqiang, et al. Advances in studies on environmental behaviors and toxic effects of perfluoroalkyl substance isomers[J]. Asian Journal of Ecotoxicology, 2012, 7(5): 464-476.
张义峰, 赵丽霞, 单国强, 等. 全氟化合物同分异构体的环境行为及毒性效应研究进展[J]. 生态毒理学报, 2012, 7(5): 464-476.
54 Awad E, Zhang X M, Bhavsar S P, et al. Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport[J]. Environmental Science & Technology, 2011, 45(19): 8 081-8 089.
55 Wakida F T, Lerner D N. Non-agricultural sources of groundwater nitrate: A review and case study[J]. Water Research, 2005, 39(1): 3-16.
56 Chen Jianyao, Wang Ya, Zhang Hongbo, et al. Overview on the studies of nitrate pollution in groundwater[J]. Progress in Geography, 2006, 25(1): 34-44.
陈建耀, 王亚, 张洪波, 等. 地下水硝酸盐污染研究综述[J]. 地理科学进展, 2006, 25(1): 34-44.
57 Chen Xinming, Ma Teng, Cai Hesheng, et al. Regional control of groundwater nitrogen contamination[J]. Geological Science and Techology Information, 2013, 32(6): 130-143, 149.
陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143, 149.
58 Zhang Xiaonan, Qiu Guoyu. Causes of excessive use of chemical fertilizer and its impacts on China' s water environment security[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(4):104-114.
张晓楠, 邱国玉. 化肥对我国水环境安全的影响及过量施用的成因分析[J]. 南水北调与水利科技, 2019, 17(4): 104-114.
59 Lee D G, Roehrdanz P R, Feraud M, et al. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers[J]. Water Research, 2015, 85:467-475.
60 Nicole M B, Robin W, Christian M, et al. A review of threats to groundwater quality in the anthropocene[J]. Science of the Total Environment, 2019, 684: 136-154.
61 Gu B J, Ge Y, Chang S X, et al. Nitrate in groundwater of China: Sources and driving forces: Human and policy dimensions[J]. Global Environmental Change, 2013, 23(5): 1 112-1 121.
62 Kut K M K, Sarswat A, Srivastava A, et al. A review of fluoride in african groundwater and local remediation methods[J]. Groundwater for Sustainable Development, 2016, 2/3: 190-212.
63 Qi Huihui, Ma Chuanming, He Zekang, et al. Review of hydrogeochemical and environmental isotope approaches in groundwater salinization study[J]. Safety and Environmrntal Engineering, 2018, 118(4): 101-109.
祁惠惠, 马传明, 和泽康, 等. 水文地球化学和环境同位素方法在地下水咸化中的研究与应用进展[J]. 安全与环境工程, 2018, 118(4): 101-109.
64 Cary L, Petelet-Giraud E, Bertrand G, et al. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach[J]. Science of The Total Environment, 2015, 530/531: 411-429.
65 Cooper C A, Mayer P M, Faulkner B R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream[J]. Biogeochemistry, 2014, 121(1): 149-166.
66 Haque S J, Onodera S I, Shimizu Y. An overview of the effects of urbanization on the quantity and quality of groundwater in South Asian megacities[J]. Limnology, 2013, 14(2): 135-145.
67 Merchán D, Auqué L F, Acero P, et al. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence[J]. Science of the Total Environment, 2015, 502: 330-343.
68 Meriano M, Eyles N, Howard K W F. Hydrogeological impacts of road salt from Canada\"s busiest highway on a Lake Ontario watershed (Frenchman\"s Bay) and lagoon, city of Pickering[J]. Journal of Contaminant Hydrology, 2009, 107(1/2): 66-81.
69 Chen Mengfang. Review on heavy metal remediation technology of soil and groundwater at industrially contaminated site in China[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 327-335.
陈梦舫. 我国工业污染场地土壤与地下水重金属修复技术综述[J]. 中国科学院院刊, 2014, 29(3): 327-335.
70 Long Yuyang, Hu Lifang, Shen Dongsheng, et al. Research progress of heavy metal pollution in municipal solid waste[J]. Bulletin of Science and Technology, 2007, 23(5): 760-764.
龙於洋, 胡立芳, 沈东升,等. 城市生活垃圾中重金属污染研究进展[J]. 科技通报, 2007, 23(5): 760-764.
71 Bao Zhe. Research on Pollution Risk of Heavy Metals in Soil and Groundwater under Reclaimed Water Irrigation[D]. Beijing: China University of Geosciences (Beijing), 2014.
宝哲. 再生水灌溉土壤—地下水重金属污染特征与风险评价[D]. 北京: 中国地质大学(北京), 2014.
72 Zang Xinghua. Pollution Characteristics and Risk Assessment of Typical Heavy Metals during Urbanization Process—A Case Study of Shenfu New District[D]. Beijing: Beijing Jiaotong University, 2017.
臧星华. 城镇化进程中典型金属的污染特征及其风险评价——以沈抚新区为例[D]. 北京: 北京交通大学, 2017.
73 Dong Rong, Wang Ya, Zhou Yongzhang. Impats of urbanization on heavy metal/metalloid concentrations in groundwater—A case study in Futian district, Shenzhen City[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 945-952.
董蓉, 王亚, 周永章.城市化对地下水重金属/类金属的影响——以深圳市福田区为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 945-952.
74 Du Xinqiang, Fang Min, Ye Xueyan. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science, 2018, 39(11): 428-437.
杜新强, 方敏, 冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学, 2018, 39(11): 428-437.
75 Zhou J, Cui J, Fan J L, et al. Dry deposition velocity of atmospheric nitrogen in a typical red soil agro-ecosystem in Southeastern China[J]. Environmental Monitoring and Assessment, 2010, 167(1/4): 105-113.
76 Liu Xuejun, Zhang Fusuo. Nutrient from environment and its effect in nutrient resources management of ecosystems—A case study on atmospheric nitrogen deposition[J]. Arid Zone Research, 2009, 26(3): 306-311.
刘学军, 张福锁. 环境养分及其在生态系统养分资源管理中的作用——以大气氮沉降为例[J]. 干旱区研究2009, 26(3): 306-311.
77 Chen K P, Jiao J J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: A case study in Shenzhen, China[J]. Environment Pollution, 2008, 151: 576-584.
78 Grimmeisen F, Lehmann M F, Liesch T, et al. Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system[J]. Science of the Total Environment, 2017, 583: 202-213.
79 Ministry of Ecology and Environment of the People’s Republic of China. Notice on Printing and Distributing the National Groundwater Pollution Prevention and Control Plan(2011-2020)[EB/OL]. (2011-10-28[2019-12-30]. .
URL    
生态环境部. 关于印发《全国地下水污染防治规划(2011—2020年)》的通知[EB/OL]. (2011-10-28)[2019-12-30]. .
URL    
80 Burri Nicole M, Weatherl Robin, Moeck Christian, et al. A review of threats to groundwater quality in the Anthropocene[J]. Science of the Total Environment, 2019, 684: 136-154.
81 National Bureau of Statistics of China (NBS). 1981-2009 China Statistical Yearbook[R]. Beijing: National Bureau of Statistics of China, 2010.
国家统计局. 1981—2009年中国统计年鉴[R]. 北京: 国家统计局, 2010.
82 Gu B, Ge Y, Luo W, et al. Rapid growth of industrial nitrogen fluxes in China: Driving forces and consequences[J]. Science in China(Series D), 2013, 56(4): 662-670.
83 Wang Jiating, Zhang Huanzhao, Ji Kaiwen. Urban Land Intensive Use in China: Theoretical Analysis and Empirical Study[M]. Tianjin: Nankai University Press, 2008.
王家庭, 张换兆, 季凯文. 中国城市土地集约利用: 理论分析与实证研究[M]. 天津: 南开大学出版社, 2008.
84 Ministry of Housing and Urban-Rural Development of the Peoples Republic of China. 2016 Yearbook on Urban Construction Statistical[R]. Beijing: Ministry of Housing and Urban- Rural Development of the Peoples Republic of Chna, 2017.
住房和城乡建设部. 2016年城市建设统计年鉴[R]. 北京: 住房和城乡建设部, 2017.
85 Jia Z, Bian J, Wang Y, et al. Impacts of urban land use on the spatial distribution of groundwater pollution, Harbin City, Northeast China[J]. Journal of Contaminant Hydrology, 2018, 215: 29-38.
86 Jeong C H. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea[J]. Journal of Hydrology, 2001, 253: 194-210.
87 Yang Yu, Lian Xinying, Ma Zhifei, et al. Risk assessment technology method on groundwater environment safety of reclaimed water injection[J]. Ecology and Environmental Sciences, 2014, 23(11): 1 806-1 813.
杨昱, 廉新颖, 马志飞, 等. 再生水回灌地下水环境安全风险评价技术方法研究[J]. 生态环境学报, 2014, 23(11): 1 806-1 813.
88 Chen Weiping, Sidan Lü, Wang Meie, et al. Research progress on the effect of reclaimed water recharge on groundwater quality[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1 253-1 262.
陈卫平, 吕斯丹, 王美娥, 等. 再生水回灌对地下水水质影响研究进展[J]. 应用生态学报, 2013, 24(5): 1 253-1 262.
89 Chen J, Tang C, Yu J. Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China[J]. Journal of Hydrology, 2006, 326(1/4): 367-378.
90 Kiel B A, Bayani Cardenas M. Lateral hyporheic exchange throughout the Mississippi River network[J]. Nature Geoscience, 2014, 7(6): 413-417.
91 Fang Jian, Du Juan, Xu Wei, et al. Advances in the study of climate change impacts on flood disaster[J]. Advances in Earth Science, 2014, 29(9): 1 085-1 093.
方建, 杜鹃, 徐伟, 等. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1 085-1 093.
92 Kong Feng, Fang Jian, Lili Lü. The diagnosis of heavy rainfall in china and correlation of heavy rainfall with multiple climatic factors in china from 1961 to 2015[J]. Journal of Tropical Meteorology, 2018, 34(1): 34-47.
孔锋, 方建, 吕丽莉. 1961—2015年中国暴雨变化诊断及其与多种气候因子的关联性研究[J]. 热带气象学报, 2018, 34(1): 34-47.
93 Han D, Currell M J, Cao G, et al. Alterations to groundwater recharge due to anthropogenic landscape change[J]. Journal of Hydrology, 2017, 554: 545-557.
94 Barron O V, Barr A D, Donn M J. Evolution of nutrient export under urban development in areas affected by shallow watertable[J]. Science of the Total Environment, 2013,443: 491-504.
95 Park Seong-sook, Soon-oh Kim, Seong-taek Yun, et al. Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea[J]. Environmental Geology, 2005, 48:1 116-1 131.
96 Peng Cong, He Jiangtao, Liao Lei, et al. Research on the influence degree of human activ ities on groundwater quality by the method of geochemistry: A case study from Liuj iang Basin[J]. Earth Science Frontiers, 2017, 24(1): 321-331.
彭聪, 何江涛, 廖磊, 等. 应用水化学方法识别人类活动对地下水水质影响程度:以柳江盆地为例[J]. 地学前缘, 2017,24(1): 321-331.
97 Ministry of Housing and Urban- Rural Development of the Peoples Republic of China. Notice of the Ministry of Housing and Urban-Rural Development on Issuing the 13th Five-Year Plan for the Development and Utilization of Urban Underground Space [EB/OL]. (2016-05-25)[2019-12-30]. .
URL    
住房和城乡建设部. 住房城乡建设部关于印发城市地下空间开发利用“十三五”规划的通知[EB/OL]. (2016-05-25)[2019-12-30]. .
URL    
98 Zhang Zhifeng, Liu Hong, Chen Zhilong. Overview of China's underground space development in 2016[J]. Urban and Rural Development, 2017,(3): 60-65.
张智峰, 刘宏, 陈志龙. 2016年中国城市地下空间发展概览[J].城乡建设, 2017,(3): 60-65.
99 Xu Jie, Wang Guoquan, Li Xiaozhao. A preliminary research on potential effect of underground engineering on groundwater enivironment[J]. Journal of Engineering Geology, 1999, 7(1): 15-19.
许劼, 王国权, 李晓昭. 城市地下空间开发对地下水环境影响的初步研究[J]. 工程地质学报, 1999, 7(1): 15-19.
100 Barringer J L, Szabo Z. Overview of investigations into mercury in ground water, soils and septage, new jersey coastal plain[J]. Water, Airand Soil Pollution, 2006, 175(1): 193-221.
101 Yang Wenbin. Impact Research of Underground Space Development on the Convection and Diffusion of Pollutants in Groundwater in Guangzhou City[D]. Guangzhou: South China University of Technology, 2011.
杨文滨. 广州城区地下空间开发对地下水中污染物对流扩散的影响研究[D]. 广州: 华南理工大学, 2011.
102 Chae G T, Yun S T, Choi B Y, et al. Hydrochemistry of urban groundwater, Seoul, Korea: The impact of subway tunnels on groundwater quality[J]. Journal of Contaminant Hydrology, 2008, 101(1/4): 42-52.
103 Attard G, Rossier Y, Eisenlohr L. Underground structures increasing the intrinsic vulnerability of urban groundwater: Sensitivity analysis and development of an empirical law based on a groundwater age modelling approach[J]. Journal of Hydrology, 2017, 552: 460-473.
104 Qi Yanjie, Liu Fei. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11.
祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11.
105 Hashim M A, Mukhopadhyay S, Sahu J N, et al. Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management, 2011, 92(10): 2 355-2 388.
106 Guo Huaming, Ni Ping, Jia Yongfeng, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Geoscience Frontiers, 2014, 21(4): 1-12.
郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12.
107 Jiao Xingchun. Groundwater quality assessment and groundwater resource management: A review on hydrogeochemical and stable isotope approaches[J]. Acta Geologica Sinica, 2016, 90(9): 2 476-2 489.
焦杏春. 地下水水质评价与水资源管理:水文地球化学与同位素方法的应用研究进展[J]. 地质学报, 2016, 90(9): 2 476-2 489.
108 Luo Z, Asproudi C. Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change[J]. Applied Thermal Engineering, 2015, 90: 530-537.
109 Menberg K, Bayer P, Zosseder K, et al. Subsurface urban heat islands in German cities[J]. Science of the Total Environment, 2013, 442: 123-133.
110 Epting J, Huggenberger P. Unraveling the heat island effect observed in urban groundwater bodies—Definition of a potential natural state[J]. Journal of Hydrology, 2013, 501: 193-204.
111 Tran H, Uchihama D, Ochi S, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities[J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(1): 34-48.
112 Menberg K, Blum P, Schaffitel A, et al. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island[J]. Environmental Science & Technology, 2013, 47(17): 9 747-9 755.
113 Benz S A, Bayer P, Menberg K, et al. Spatial resolution of anthropogenic heat fluxes into urban aquifers[J]. Science of the Total Environment, 2015, 524/525: 427-439.
114 Ampofo F, Maidment G, Missenden J. Underground railway environment in the UK Part 2: Investigation of heat load[J]. Applied Thermal Engineering, 2004, 24(5/6): 633-645.
115 Attard G, Rossier Y, Winiarski T, et al. Deterministic modeling of the impact of underground structures on urban groundwater temperature[J]. Science of the Total Environment, 2016, 572: 986-994.
116 Russo S L, Taddia G. Advective heat transport in an unconfined aquifer induced by the field injection of an open-loop groundwater heat pump[J]. American Journal of Environmental Sciences, 2010, 6(3): 253-259.
117 Benz, S A, Bayer P, Menberg K, et al. Spatial resolution of anthropogenic heat fluxes into urban aquifers[J]. Science of the Total Environment, 2015, 524/525: 427-439.
118 Russo S L, Taddia G, Verda V. Development of the Thermally Affected Zone (TAZ) around a Groundwater Heat Pump (GWHP) system: A sensitivity analysis[J]. Geothermics, 2012, 43: 66-74.
119 Mileni D, Vasiljevi P, Vranje A. Criteria for use of groundwater as renewable energy source in geothermal heat pump systems for building heating/cooling purposes[J]. Energy and Buildings, 2010, 42(5): 649-657.
120 Taylor C A, Stefan H G. Shallow groundwater temperature response to climate change and urbanization[J]. Journal of Hydrology, 2009, 375(3/4): 601-612.
121 Benz S A, Bayer P, Goettsche F M, et al. Linking surface urban heat islands with groundwater temperatures[J]. Environmental Science & Technology, 2016, 50(1): 70-78.
122 Allen A, Milenic D, Sikora P. Shallow gravel aquifers and the urban ‘heat island’ effect: A source of low enthalpy geothermal energy[J]. Geothermics, 2003, 32(4/6): 569-578.
123 Song Guohui. Study on Groundwater Dependent Ecosystem and Ecological Mechanisms of Vegetation Succession in Desert Lake-basin Region[D]. Xi’an: Chang'an University, 2012.
宋国慧. 沙漠湖盆区地下水生态系统及植被生态演替机制研究[D]. 西安: 长安大学, 2012.
124 Sun Xujin, Zhou Ge, Sun Xiaoping, et al. The study of ground temperature change after groundwater exceeding extraction[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2003, 24(1): 37-39.
孙绪金, 周革, 孙晓平, 等. 地下水超采引起的近地表地温变化规律研究[J]. 华北水利水电学院学报, 2003, 24(1): 37-39.
125 Fu Zhimin, Xiang Yan. Brief analysis of heat island effect of shallow groundwater depression cone and relevant concepts[J]. Water Resources and Power, 2010, 28(12): 30-32.
傅志敏, 向衍. 简析浅层地下水降落漏斗区热岛效应及有关概念[J]. 水电能源科学, 2010, 28(12): 30-32.
126 Fu Zhimin. Research on the Effects of Shallow Groundwater Table on the Near Heat Island[D]. Nanjing: Hohai University, 2007.
傅志敏. 浅埋地下水对近地表热岛效应影响研究[博士论文D]. 南京: 河海大学, 2007.
127 Yalcin T, Yetemen O. Local warming of groundwaters caused by the urban heat island effect in Istanbul, Turkey[J]. Hydrogeology Journal, 2009, 17(5): 1 247-1 255.
128 Lian Yingli, Zhang Guanghui, Nie Zhenlong, et al. Groundwater temperature variation characteristics and main influence factors identification in Zhangye Basin of northwest China[J]. Arid Land Geography, 2011, 34(3): 391-399.
连英立, 张光辉, 聂振龙, 等. 西北内陆张掖盆地地下水温度变化特征及主要影响因素识别[J]. 干旱区地理, 2011, 34(3): 391-399.
129 Dong Yuean. Research of the temperature’s influence on the microorganism in groundwater[J]. Site Investigation Science and Technology, 2008, (2): 17-20, 66.
董悦安. 温度变化对地下水中微生物影响的研究[J]. 勘察科学技术, 2008, (2): 17-20, 66.
130 Prommer H, Stuyfzand P J. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer[J]. Environmental Science & Technology, 2005, 39(7): 2 200-2 209.
131 Lin Xueyu, Fang Yanna, Liao Zisheng, et al. Mpactof global warming and human activities on groundwater temperature[J]. Journal of Beijing Normal University (Natural Science), 2009, 45(5/6): 452-457.
林学钰, 方燕娜, 廖资生, 等. 全球气候变暖和人类活动对地下水温度的影响[J] .北京师范大学学报:自然科学版, 2009, 45(5/6): 452-457.
132 Ke Zhu, Blum Philipp, Ferguson Grant, et al. The geothermal potential of urban heat islands[J]. Environmental Research Letters, 2011, 5: 1-6.
133 Wang Jiale, Jia Baojie, Wang Zhigang. Influence of water resource heat pump on groundwater temperature field in Karst aquifer[J]. International Journal Hydroelectric Energy, 2019, 37(2): 61-64.
王家乐, 贾宝杰, 王志刚. 岩溶含水层地下水源热泵运行对地下水温度场的影响[J]. 水电能源科学, 2019, 37(2): 61-64.
134 Wang Huiling,Wang Wenfeng,Wang Feng, et al. Effect of groundwater source heat pump system on ground temperature field[J]. Hydrogeology& Engineering Geology, 2011, 38(3): 28-32.
王慧玲, 王文峰, 王峰, 等. 地下水地源热泵系统应用对地温场的影响[J]. 水文地质工程地质, 2011, 38(3): 28-32.
135 Epting J, Matthias H M, Genske D, et al. Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management[J]. Applied Energy, 2018, 228: 1 499-1 505.
136 Wu Zhiwei, Song Hanzhou. Temperature as a groundwater tracer: Advances in theory and methodology[J]. Advances in Water Science, 2011, 22(5): 733-740.
吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J]. 水科学进展, 2011, 22(5):733-740.
137 Wang W K, Yang Z Y, Kong J L, et al. Ecological impacts induced by groundwater and their thresholds in the arid areas in Northwest China[J]. Environmental Engineering & Management Journal, 2013, 12(7): 1 497-1 507.
138 Liu Hu, Zhao Wenzhi, Li Zhongkai. Ecohydrology of groundwater dependent ecosystems: A review[J]. Advances in Earth Science, 2018, 33(7): 741-750.
刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
139 Jichun W U, Xiankui Z. Review of the uncertainty analysis of groundwater numerical simulation[J]. Chinese Science Bulletin, 2013, 58(25): 6-14.
140 Luo Lan. Research on groundwater pollution and its prevention-control policy in China[J]. Journal of China University of Geo-sciences (Social Sciences Edition), 2008, 8(2): 72-75.
罗兰. 我国地下水污染现状与防治对策研究[J]. 中国地质大学学报:社会科学版, 2008, 8(2): 72-75.
141 Ezzatahmadi N, Ayoko G A, Millar G J, et al. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review[J]. Chemical Engineering Journal, 2016, 312: 336-350.
142 Kuppusamy S, Palanisami T, Megharaj M, et al. In-situ remediation approaches for the management of contaminated sites: A comprehensive overview[J]. Reviews of Environmental Contamination and Toxicology, 2016, 236: 1-115.
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 任国玉, 任玉玉, 李庆祥, 徐文慧. 全球陆地表面气温变化研究现状、问题和展望[J]. 地球科学进展, 2014, 29(8): 934-946.
[3] 滕彦国,苏洁,翟远征,王金生. 地下水污染风险评价的迭置指数法研究综述[J]. 地球科学进展, 2012, 27(10): 1140-1147.
[4] 胡宁,张朝林,仲跻芹,李玉焕. 大气对流层平流层交换(STE)研究进展[J]. 地球科学进展, 2011, 26(4): 375-385.
[5] 樊杰,李平星. 基于城市化的中国能源消费前景分析及对碳排放的相关思考[J]. 地球科学进展, 2011, 26(1): 57-65.
[6] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[7] 张永民. 生物多样性的保育及可持续利用对策[J]. 地球科学进展, 2009, 24(6): 662-667.
[8] 符娟林,乔标. 基于模糊物元的城市化生态预警模型及应用[J]. 地球科学进展, 2008, 23(9): 990-995.
[9] 高霏,刘菲,陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.
[10] 周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349.
[11] 施斌,刘春,王宝军,赵理政. 城市热岛效应对土的工程性质影响及灾害效应分析[J]. 地球科学进展, 2008, 23(11): 1167-1173.
[12] 任国玉. 气候变暖成因研究的历史、现状和不确定性[J]. 地球科学进展, 2008, 23(10): 1084-1091.
[13] 姚士谋,管驰明,王书国,陈爽. 我国城市化发展的新特点及其区域空间建设策略[J]. 地球科学进展, 2007, 22(3): 271-280.
[14] AbhineetyGoel,Dr.R.B.Singh. 以减少碳损失为目标的印度大城市可持续林业:以德里地区为例[J]. 地球科学进展, 2006, 21(2): 144-150.
[15] 史培军,杜鹃,冀萌新,刘婧,王静爱. 中国城市主要自然灾害风险评价研究[J]. 地球科学进展, 2006, 21(2): 170-177.
阅读次数
全文


摘要