Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (1): 9-16    DOI: 10.11867/j.issn.1001-8166.2021.006
综述与评述     
植被物候的遥感提取及其影响因素研究进展
崔林丽1(),史军1,2,杜华强3
1.上海市生态气象和卫星遥感中心,上海 200030
2.上海城市气候变化应对重点开放实验室,上海 200030
3.浙江农林大学环境与资源学院,浙江 临安 311300
Advances in Remote Sensing Extraction of Vegetation Phenology and Its Driving Factors
Linli CUI1(),Jun SHI1,2,Huaqiang DU3
1.Shanghai Ecological Forecasting and Remote Sensing Center,Shanghai 200030,China
2.Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai (CMACC),Shanghai 200030,China
3.College of Environmental and Resource Sciences,Zhejiang A&F University,Lin'an Zhejiang 311300,China
 全文: PDF(1035 KB)   HTML
摘要:

植被物候是反映植被动态的重要指标和气候变化对生态系统影响的重要感应器,它影响着地表反照率、粗糙度、蒸发散、CO2通量以及人类生产活动。首先论述了基于遥感的植被物候提取方法和植被物候变化的影响因素两方面的研究进展,然后指出气候变化背景下植物物候研究存在的突出问题,包括遥感难以直接获取常绿植被叶片和冠层结构物候、尺度效应阻碍遥感产品与地面观测的匹配、气候要素(降水和日间、夜间温度等)和城市化对物候的影响及协同作用机制不清楚、缺少针对植被类型的物候产品和模型以及未将物候间滞后效应纳入考虑等。开展常绿植被物候指标的遥感提取方法及算法研制,探索气候变化、极端天气气候对物候的影响机制及未来预估,分析城市化、植被类型对物候的影响以及与气候变化的协同效应,建立综合考虑降水、滞后效应和尺度效应的群落尺度物候模型,是未来工作关注的重点。

关键词: 植被物候遥感提取影响因素气候变化城市化    
Abstract:

Phenology is considered as an important indicator for understanding the vegetation dynamics and the impact of climate change on ecosystem. It has significant influences on surface albedo, roughness, evapotranspiration, CO2 flux, and human activities. This study presents the progress on the phenology extraction methods based on satellite, and the driving factors of vegetation phenology dynamics. The key weaknesses in our current understanding of vegetation phenology in the context of climate change are also raised, including the difficulty in estimating the phenology of evergreen vegetation based on remote sensing directly from the perspective of leaf and canopy structure, the low comparability between satellite products and ground-based measurements due to the scale effect, the unclear synergistic mechanisms between climate factors (rainfall and day/night temperature) and urbanization, the lack of phenological products and models for specific vegetation types, as well as the inconsideration of lag effect of phenology. So, it is important to focus on the following four aspects in future research: the development of satellite phenology extraction methods for evergreen vegetation; the research on the mechanisms and forecast of climate change and extreme weather on phenology; the study of the impact of urbanization and vegetation types on phenology, together with their synergistic effects; the establishment of phenological model at community scale which considers precipitation, lag effect and scale effect.

Key words: Vegetation phenology    Remote sensing extraction    Influencing factors    Climate change    Urbanization.
收稿日期: 2020-10-28 出版日期: 2021-03-19
ZTFLH:  P935.1  
基金资助: 浙江农林大学省部共建亚热带森林培育国家重点实验室开放基金项目“亚热带森林碳循环的时空格局及其对极端气候的响应研究”(KF2017-5);上海市科技计划项目“基于遥感的生态环境监测预警研究——以长三角一体化示范区为例”(20232410100)
作者简介: 崔林丽(1975-),女,山西长治人,研究员,主要从事植被遥感和大气遥感研究. E-mail:cllcontact@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔林丽
史军
杜华强

引用本文:

崔林丽,史军,杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.

Linli CUI,Jun SHI,Huaqiang DU. Advances in Remote Sensing Extraction of Vegetation Phenology and Its Driving Factors. Advances in Earth Science, 2021, 36(1): 9-16.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.006        http://www.adearth.ac.cn/CN/Y2021/V36/I1/9

1 WHITE M A, DE BEURS K M, DIDAN K, et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006[J]. Global Change Biology, 2009, 15(10): 2 335-2 359.
2 SHEN X, LIU B, HENDERSON M, et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China[J]. Agricultural and Forest Meteorology, 2018, 259: 240-249.
3 ZHOU Decheng, ZHAO Shuqing, ZHANG Liangxia, et al. Remotely sensed assessment of urbanization effects on vegetation phenology in China's 32 major cities[J]. Remote Sensing of Environment, 2016, 176: 272-281.
4 RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169: 156-173.
5 SHEN Miaogen, PIAO Shilong, CONG Nan, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10): 3 647-3 656.
6 CHANG Qing, XIAO Xiangming, JIAO Wenzhe, et al. Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar induced chlorophyll fluorescence[J]. Agricultural and Forest Meteorology, 2019, 275: 305-316.
7 LI Xuecao, ZHOU Yuyu, ASRAR G R, et al. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data[J]. Science of the Total Environment, 2017, 605/606: 721-734.
8 PIAO Shilong, FANG Jingyun, ZHOU Liming, et al. Variations in satellite-derived phenology in China's temperate vegetation[J]. Global Change Biology, 2006, 12(4): 672-685.
9 PIAO Shilong, TAN Jianguang, CHEN Anping, et al. Leaf onset in the northern hemisphere triggered by daytime temperature[J]. Nature Communications, 2015, 6: 6 911.
10 GE Quansheng, WANG Huanjiong, RUTISHAUSER T, et al. Phenological response to climate change in China: A meta-analysis[J]. Global Change Biology, 2015, 21(1): 265-274.
11 WANG Guocheng, HUANG Yao, WEI Yurong, et al. Inner Mongolian grassland plant phenological changes and their climatic drivers[J]. Science of the Total Environment, 2019, 683: 1-8.
12 PENG Dailiang, WU Chaoyang, LI Cunjun, et al. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations[J]. Ecological Indicators, 2017, 77: 323-336.
13 LIU Zhengjia, WU Chaoyang, LIU Yansui, et al. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 81-91.
14 WHITE M A, THORNTON P E, RUNNING S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles, 1997, 11: 217-234.
15 GONSAMO A, CHEN J M, PRICE D T, et al. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique[J]. Journal of Geophysical Research, 2012, 117: G03032.
16 CAI Zhanzhang, J?NSSON P, JIN Hongxiao, et al. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data[J]. Remote Sensing, 2017, 9(12): 1 271.
17 ZHANG Xiaoyang, FRIEDL M, SCHAAF C B, et al. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 2003, 84(3): 471-475.
18 ZHOU Lei, CHI Yonggang, LIU Xiaotian, et al. Land surface phenology tracked by remotely sensed sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests[J]. Acta Ecologica Sinica, 2020, 40(12): 4 114-4 125.
18 周蕾,迟永刚,刘啸添,等. 2020.日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪[J].生态学报, 2020, 40(12): 4 114-4 125.
19 CONG Nan, PIAO Shilong, CHEN Anping, et al. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis[J]. Agricultural and Forest Meteorology, 2012, 165: 104-113.
20 WU Chaoyang, GONSAMO A, GOUGH C. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS[J]. Remote Sensing of Environment, 2014, 147: 79-88.
21 LIU Yuxia, WU Chaoyang, PENG Dailiang, et al. Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America[J]. Remote Sensing of Environment, 2016, 176: 152-162.
22 ZHANG Xiaoyang, WANG Jianmin, GAO Feng, et al. Exploration of scaling effects on coarse resolution land surface phenology[J]. Remote Sensing of Environment, 2017, 190: 318-330.
23 CAO Peiyu, ZHANG Leiming, LI Shenggong, et al. Review on vegetation phenology observation and phenological index extraction[J]. Advances in Earth Science, 2016, 31(4): 365-376.
23 曹沛雨, 张雷明, 李胜功,等. 植被物候观测与指标提取方法研究进展[J].地球科学进展, 2016, 31(4): 365-376.
24 ATKINSON P, JEGANATHAN C, DASH J, et al. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology[J]. Remote Sensing of Environment, 2012, 123: 400-417.
25 ZENG Linglin, WARDLOW B D, XIANG Daxiang, et al. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data[J]. Remote Sensing of Environment, 2020, 237: 111511.
26 GUYON D, GUILLOT M, VITASSE Y, et al. Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series[J]. Remote Sensing of Environment, 2011, 115: 615-627.
27 HAMUNYELA E, VERBESSELT J, ROERINK G. Trends in spring phenology of western European deciduous forests[J]. Remote Sensing, 2013, 5: 6159-6179.
28 KLOSTERMAN S T, HUFKENS K, GRAY J M, et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using Phenocam imagery[J]. Biogeosciences Discussions, 2014, 11: 2 305-2 342.
29 GARONNA I, DE JONG R, SCHAEPMAN M E. Variability and evolution of global land surface phenology over the past three decades (1982-2012) [J]. Global Change Biology, 2016, 22: 1 456-1 468.
30 J?NSSON A M, EKLUNDH L, HELLSTR?M M, et al. Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology[J]. Remote Sensing of Environment, 2010, 114: 2 719-2 730.
31 MELAAS E K, RICHARDSON A D, FRIEDL M A, et al. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems[J]. Agricultural and Forest Meteorology, 2013, 171: 46-56.
32 HELMAN D. Land surface phenology: What do we really 'see' from space?[J]. Science of the Total Environment, 2018, 618: 665-673.
33 PASTOR-GUZMAN J, DASH J, ATKINSON P M. Remote sensing of mangrove forest phenology and its environmental drivers[J]. Remote Sensing of Environment, 2018, 205: 71-84.
34 WANG J, WU C, WANG X, et al. A new algorithm for the estimation of leaf unfolding date using MODIS data over China's terrestrial ecosystems[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149: 77-90.
35 YUAN H, WU C, LU L, et al. A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 390-399.
36 WANG Songhan, JU Weimin, PE?UELAS J, et al. Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons[J]. Nature Ecology & Evolution, 2019, 3: 1 076-1 085.
37 DASH J, JEGANATHAN C, ATKINSON P M. The use of MERIS terrestrial chlorophyll index to study spatio-temporal variation in vegetation phenology over India[J]. Remote Sensing of Environment, 2010, 114: 1 388-1 402.
38 SUN Ying, FRANKENBERG C, JUNG M, et al. Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the orbiting carbon observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP[J]. Remote Sensing of Environment, 2018, 209: 808-823.
39 WONG C Y S, D'ODORICO P, BHATHENA Y, et al. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees[J]. Remote Sensing of Environment, 2019, 233: 111407.
40 LIU Xiaotian, ZHOU Lei, SHI Hao, et al. Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data[J]. Acta Ecologica Sinica, 2018, 38(10): 3 482-3 494.
40 刘啸添, 周蕾, 石浩, 等. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J]. 生态学报, 2018, 38(10): 3 482-3 494.
41 MERRICK T, PAU S, JORGE M L S P, et al. Spatiotemporal patterns and phenology of tropical vegetation solar-induced chlorophyll fluorescence across Brazilian biomes using satellite observations[J]. Remote Sensing, 2019, 11(15): 1 746.
42 S-J JEONG, SCHIMEL D, FRANKENBERG C, et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests[J]. Remote Sensing of Environment, 2017, 190: 178-187.
43 TANG J, K?RNER C, MURAOKA H, et al. Emerging opportunities and challenges in phenology: A review[J]. Ecosphere, 2016, 7(8): e01436.
44 LUAN Haijun, TIAN Qingjiu, ZHANG Xinxin, et al. Trends on scaling research for land surface parameters in quantitative remote sensing[J]. Advances in Earth Science, 2018, 33(5): 483-492.
44 栾海军, 田庆久, 章欣欣, 等. 定量遥感地表参数尺度转换研究趋势探讨[J].地球科学进展, 2018, 33(5): 483-492.
45 DOKTOR D, BONDEAU A, KOSLOWSKI D, et al. Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations[J]. Remote Sensing of Environment, 2009, 113(12): 2 618-2 632.
46 ZHANG X, JAYAVELU S, LIU L, et al. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery[J]. Agricultural and Forest Meteorology, 2018, 256/257: 137-149.
47 CAO R, SHEN M, ZHOU J, et al. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation[J]. Agricultural and Forest Meteorology, 2018, 249: 176-186.
48 SHEN Miaogen, JIANG Nan, PENG Dailiang, et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?[J]. Agricultural and Forest Meteorology, 2020, 291: 108077.
49 BERRA EF, GAULTON R, BARR S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment, 2019, 223: 229-242.
50 CHEN Xiang, WANG Dawei, CHEN Jin, et al. The mixed pixel effect in land surface phenology: A simulation study[J]. Remote Sensing of Environment, 2018, 211: 338-344.
51 STUDER S, APPENZELLER C, DEFILA C. Inter-annual variability and decadal trends in Alpine spring phenology: A multivariate analysis approach[J]. Climate Change, 2005, 73: 395-414.
52 LIANG Liang, SCHWARTZ M D, FEI Songlin. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest[J]. Remote Sensing of Environment, 2011, 115: 143-157.
53 REN Shilong, YI Shuhua, PEICHL M, et al. Diverse responses of vegetation phenology to climate change in different grasslands in Inner Mongolia during 2000-2016[J]. Remote Sensing, 2018, 10(1): 17.
54 REN Shilong, QIN Qiming, REN Huazhong, et al. New model for simulating autumn phenology of herbaceous plants in the Inner Mongolian Grassland[J]. Agricultural and Forest Meteorology, 2019, 275: 136-145.
55 CONG Nan, WANG Tao, Huijuan NAN, et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis[J]. Global Change Biology, 2013, 19(3): 881-891.
56 WU Xiuchen, LIU Hongyan. Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982-2006[J]. Global Change Biology, 2013, 19(3): 870-880.
57 XIAO Fang, SANG Jing, WANG Haimei. Effects of climate change on typical grassland plant phenology in Ewenki, Inner Mongolia[J]. Acta Ecologica Sinica, 2020, 40(8): 2 784-2 792.
57 肖芳,桑婧,王海梅.气候变化对内蒙古鄂温克旗典型草原植物物候的影响[J]. 生态学报,2020,40(8): 2 784-2 792.
58 FU Yongshuo H, PIAO Shilong, ZHAO Hongfang, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes[J]. Global Change Biology, 2014, 20(12): 3 743-3 755.
59 FU Yongshuo H, PIAO Shilong, VITASSE Y, et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling, precipitation and insolation[J]. Global Change Biology, 2015, 21(7): 2 687-2 697.
60 ZHAO Xia, HU Huifeng, SHEN Haihua, et al. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau[J]. Landscape Ecology, 2015, 30(9): 1 599-1 611.
61 TAO F, YOKOZAWA M, ZHANG Z, et al. Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982-2000[J]. International Journal of Remote Sensing, 2008, 29(19): 5 461-5 478.
62 WANG Yanfang, SHEN Yanjun, SUN Fubao, et al. Evaluating the vegetation growing season changes in the arid region of northwestern China[J]. Theoretical and Applied Climatology, 2014, 118(3): 569-579.
63 FU Yongshuo H, LIU Yongjie, DE BOECK H J, et al. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees[J]. New Phytologist, 2016, 212: 590-597.
64 ROSSI S, ISABEL N. Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming[J]. Global Change Biology, 2017, 23(1): 446-454.
65 SHEN Miaogen, PIAO Shilong, CHEN Xiaoqiu, et al. Strong impacts of daily minimum temperature on the green up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3 057-3 066.
66 YUAN Moxi, WANG Lunche, LIN Aiwen, et al. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China[J]. Ecological Indicators, 2020, 108: 105760.
67 QIU Guoyu,ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science, 2019,34(6): 640-649.
67 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展,2019,34(6): 640-649.
68 SETO K C, SATTERTHWAITE D. Interactions between urbanization and global environmental change[J]. Current Opinion in Environmental Sustainability, 2010, 3(2): 127-128.
69 LUO Xinyue, CHEN Mingxing. Research progress on the impact of urbanization on climate change[J]. Advances in Earth Science, 2019, 34(9): 984-997.
69 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
70 ZHANG Xiaoyang, FRIEDL M A, SCHAAF C B, et al. The footprint of urban climates on vegetation phenology[J]. Geophysical Research Letters, 2004, 31: L12209.
71 LI D, STUCKY B J, DECK J, et al. The effect of urbanization on plant phenology depends on regional temperature[J]. Nature Ecology & Evolution, 2019, 3: 1 661-1 667.
72 WALKER J J, DE BEURS K M, HENEBRY G M. Land surface phenology along urban to rural gradients in the US Great Plains[J]. Remote Sensing of Environment, 2015, 165: 42-52.
73 S-J JEONG, PARK H, C-H HO, et al. Impact of urbanization on spring and autumn phenology of deciduous trees in the Seoul Capital Area, South Korea[J]. International Journal of Biometeorology, 2019, 63: 627-637.
74 QIU Tong, SONG Conghe, ZHANG Yulong, et al. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities[J]. Remote Sensing of Environment, 2020, 236: 111477.
75 RUAN Yongjian, ZHANG Xinchang, XIN Qinchuan, et al. Enhanced vegetation growth in the urban environment across 32 cities in the Northern Hemisphere[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124: 3 831-3 846.
76 IPCC. Climate change 2013: The physical science basis[M]. Cambridge and New York: Cambridge University Press, 2013.
77 HE Zhibin, DU Jun, CHEN Longfei, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China[J]. Agricultural and Forest Meteorology, 2018, 260/261: 31-40.
78 YUAN Moxi, ZHAO Lin, LIN Aiwen, et al. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect[J]. Science of the Total Environment, 2020, 738: 140297.
79 YING Hong, ZHANG Hongyan, ZHAO Jianjun, et al. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015[J]. Ecological Indicators, 2020, 111: 105974.
80 K?RNER C, BASLER D. Phenology under global warming[J]. Science, 2010, 327: 1 461-1 462.
81 REYES-FOX M, STELTZER H, TRLICA M J, et al. Elevated CO2 further lengthens growing season under warming conditions[J]. Nature, 2014, 510: 259-262.
82 KEENAN T F, RICHARDSON A D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models[J]. Global Change Biology, 2015, 21: 2 634-2 641.
83 RICHARDSON A D, HUFKENS K, MILLIMAN T, et al. Intercomparison of phonological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing[J]. Scientific Reports, 2018, 8: 5 679.
[1] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[2] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[3] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[4] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[5] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[6] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[7] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[8] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[9] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[10] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[11] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[12] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[13] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[14] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[15] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.