地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 962 -977. doi: 10.11867/j.issn.1001-8166.2020.076

全球变化研究 上一篇    下一篇

南大洋海温长期变化研究进展
龙上敏 1, 2( ),刘秦玉 3, 4,郑小童 3, 4,程旭华 1, 2,白学志 1, 2,高臻 2   
  1. 1.河海大学,自然资源部海洋灾害预报技术重点实验室,江苏 南京 210098
    2.河海大学,海洋学院,江苏 南京 210098
    3.中国海洋大学物理海洋实验室,海洋与大气相互作用与气候实验室,山东 青岛 266100
    4.青岛海洋科学与技术试点国家实验室,山东 青岛 266100
  • 收稿日期:2020-07-16 修回日期:2020-08-15 出版日期:2020-09-10
  • 通讯作者: 龙上敏 E-mail:smlong@hhu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目“热带印度洋SST对全球变暖的慢响应过程”(41706026);国家重点研发计划项目“海洋—海冰参数和物理过程的观测数据集构建与模式评估”(2017YFA0604600)

Research Progress of Long-term Ocean Temperature Changes in the Southern Ocean

Shangmin Long 1, 2( ),Qinyu Liu 3, 4,Xiaotong Zheng 3, 4,Xuhua Cheng 1, 2,Xuezhi Bai 1, 2,Zhen Gao 2   

  1. 1.Key Laboratory of Marine Hazards Forecasting,Ministry of Natural Resources,Hohai University,Nanjing 210098,China
    2.College of Oceanography,Hohai University,Nanjing 210098,China
    3.Physical Oceanography Laboratory of Ocean University of China,Ocean-Atmosphere Interaction and Climate Laboratory,Qingdao 266100,China
    4.Qingdao National Laboratory for Marine Science and Technology,Qingdao 266100,China
  • Received:2020-07-16 Revised:2020-08-15 Online:2020-09-10 Published:2020-10-28
  • Contact: Shangmin Long E-mail:smlong@hhu.edu.cn
  • About author:Long Shangmin (1988-), male, Yongzhou City, Hunan Province, Lecturer. Research areas include large-scale climate change and ocean circulation. E-mail: smlong@hhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Slow response of tropical Indian Ocean sea surface temperature to global warming”(41706026);The National Key Research and Development Program of China “Observational dataset construction and model evaluation of sea-ice parameters and physical processes”(2017YFA0604600)

近几十年来,南大洋是全球吸热最显著、存储热量最多的洋盆,但其海温变化的机制以及演变过程至今还不清楚,因此南大洋成为近年来气候变化研究的热点海域。通过回顾有关南大洋海温长期变化的观测事实和模式模拟的研究结果,介绍了前人研究中有关风场、表面热通量、海冰等不同因素在南大洋海温变化中的作用,以及海洋平均环流、海洋涡旋等海洋内部动力过程对南大洋海温的调整机制,并提出从海洋对外辐射强迫的快、慢时间尺度响应这一角度来全面理解南大洋海温的变化机理和演变过程。最后结合目前的研究现状和未来需要深入研究的问题进行了探讨和展望,以期推动在气候变化背景下对南大洋内部响应过程本质的认识和其气候效应方面的研究。

In the recent decades, a large amount of anthropogenic heat has been absorbed and stored in the Southern Ocean. Results from observations and climate models' simulations both show that the Southern Ocean displays large warming in the upper and subsurface ocean that maximizes at 45°~40°S. However, the underlying mechanisms and evolution processes of the Southern Ocean temperature changes remain unclear, leaving the Southern Ocean to be a hotspot of climate change studies in the recent years. The present study summarized the current progress in the observations and numerical modeling of long-term temperature changes in the Southern Ocean. The effects of changes in wind, surface heat flux, sea-ice and other factors on the ocean temperature changes were presented, along with the introduction to the role of oceanic mean circulation and eddies. The present study further proposed that a deepening of the understanding in the Southern Ocean temperature change may be achieved by investigating the fast and slow responses of the Southern Ocean to external radiative forcing, which are respectively associated with the fast adjustments of the ocean mixed-layer and the slow evolution of the deep ocean. Specifically, the striking and fast mixed-layer ocean warming north of 50°S is tightly related to the surface heat absorption over upwelling regions and wind-driven meridional heat transport, resulting in enhanced warming around 45°S. While in the slow response of the Southern Ocean temperature, the enhanced ocean warming shifts southward and downward, mainly associating with the heat transfer from oceanic eddies. The Southern Ocean temperature has pronounced climatic effects on many aspects, such as global energy balance, sea-level rise, ocean stratification changes, regional surface warming and atmospheric circulation changes. However, large model biases/deficiencies in simulating the present-day climatology and essential ocean dynamic processes last in generations of climate models, which are the main challenge in advancing our understanding in the mechanisms for the Southern Ocean climate changes. Therefore, to achieve reliable future projections of the Southern Ocean climate, substantial efforts will be needed to improve the model performances and physical understanding in the relative role of various processes in ocean temperature changes at different time scales.

中图分类号: 

图1 南大洋水文环境及动力过程示意图(据参考文献[ 11 ]修改)
Fig.1 Schematic diagram of the hydrological environment and dynamical processes in the Southern Ocean (modified after reference [ 11 ])
图2 纬向平均的南大洋海温在19502019年和19802019年的变化趋势图
(a)和(c)来自中国科学院大气物理研究所(IAP)的海温重构数据 [ 31 ],(b)和(d)来自英国气象局的EN4.2.1数据 [ 32 ];图中填色为变化趋势,等值线为1950—1999年平均的气候态,图2a中的绿色等值线为CMIP6多模式集合平均的历史时期模拟结果(1950—2014年海温变化趋势)
Fig.2 Linear trend of zonal-mean ocean temperature in the Southern Ocean during 1950-2019 and 1980-2019
(a) and (c) are results based on data from Institute of Atmospheric Physics Chinese Academy of Sciences (IAP) [ 31 ], while (b) and (d) are results based on data from Met office Hadley center (EN4.2.1) [ 32 ], with color shaded for the linear trend, black contours for the annual-mean climatology of 1950-1999 and green contours for the Multi-model Ensemble-mean (MME) linear trend of ocean temperature during historical period (1950-2014) in CMIP6
图3 SST和表面2 m气温(TAS)在4CO2突增理想实验中的变化图
实线为全球平均;虚线为南大洋平均;垂直虚线为第10年的位置
Fig.3 Changes in Sea Surface Temperature (SST) and surface air temperature at 2 m (TAS) in the abruptly quadrupled CO2 experiment
Solid line for global-mean, dotted line for the Southern Ocean-mean, the vertical dotted lines indicates the time of year 10
图4 快、慢响应中纬向平均的海温(Temp)和经向流函数表征的经向翻转环流(MOC)变化图
(a)和(c)为海温变化,(b)和(d)为经向流函数变化,等值线为各自的气候态
Fig.4 Changes in zonal-mean ocean temperature (Temp) and meridional streamfuction-indicated Meridional Overturning Circulation (MOC) in the fast and slow responses
(a) and (c) for temperature, (b) and (d) for meridional streamfuction, contours are their climatology
图5 CMIP6多模式集合平均的快响应、慢响应成分中的SST变化图
Fig.5 CMIP6 multi-model ensemble-mean SST change in the fast and slow responses
图6 南大洋热存储量分布及热收支分析示意图(据参考文献[ 48 ]修改)
(a)为纬向积分的热存储量随纬度—深度分布图;(b)为热收支分析结果示意图,红色直线箭头为平均流的热输送,红色波浪线箭头为涡致热输运
Fig.6 Schematic diagram of the heat storage and budget analyses in the Southern Ocean (modified after reference[ 48 ])
(a) Latitude-depth distribution of zonal-integrated ocean heat storage and (b) Heat budget results, the straight arrow indicates the mean circulation-induced heat transport, the wavy arrow presents the eddies-induced heat transport
表1 模式模拟偏差分析中使用的 CMIP5CMIP6模式
Table 1 CMIP5 and CMIP6 models used in the model bias analyses
图7 CMIP5CMIP6模式对南大洋SST的模拟偏差图
(a)历史时期(1979—2005年)CMIP5多模式集合平均与观测(ERSST v5)之差;(b)CMIP6多模式集合平均(MME)与观测之差;(c)CMIP6与CMIP5的MME之差(即两代模式模拟偏差的变化);(d)CMIP6相对于CMIP5模式模拟偏差变化的百分比(%);所有的黑色等值线均为图7a中CMIP5模式的SST模拟偏差等于0的位置;CMIP5和CMIP6模式均为27个,且CMIP6中的各个模式均为CMIP5中对应模式的升级版本
Fig.7 Model biases of Southern Ocean SST in CMIP5 and CMIP6
Differences in annual-mean climatology (1979-2005 mean) SST between (a) CMIP5 MME and observation (ERSST v5); (b) CMIP6 MME and observation and (c) CMIP6 MME and CMIP5 MME; (d) The percentage change in the CMIP6 model bias relative to that from CMIP5; Black contours in all panels are the zero contour in Figure 7a; The number of models for the MME is 27 for both CMIP5 and CMIP6, with each CMIP6 model being the updated version from its family predecessor in CMIP5
1 IPCC. Climate Change 2013: The Physical Science Basis[M]. UK: Cambridge University Press, 2013.
2 Trenberth K E, Fasullo J T, Balmaseda M A. Earth's energy imbalance[J]. Journal of Climate, 2014, 27(9): 3 129-3 144.
3 Cheng L, Trenberth K E, Fasullo J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3(3): e1601545.
4 Zanna L, Khatiwala S, Gregory J M, et al. Global reconstruction of historical ocean heat storage and transport[J]. Proceedings of the National Academy of Sciences, 2019, 116(4): 1 126-1 131.
5 Chen X, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199): 897-903.
6 Liu W, Xie S-P, Lu J. Tracking ocean heat uptake during the surface warming hiatus[J]. Nature Communications, 2016, 7: 1-9.
7 Xu Yidan, Li Jianping, Wang Qiuyun, et al. Review of the research progress in global warming hiatus[J]. Advances in Earth Science, 2019, 34(2): 175-190.
徐一丹,李建平,汪秋云,等. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
8 Cheng L, Abraham J, Hausfather Z, et al. How fast are the oceans warming?[J]. Science, 2019, 363(6 423): 128-129.
9 Fr?licher T L, Sarmiento J L, Paynter D J, et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models[J]. Journal of Climate, 2015, 28(2): 862-886.
10 Shi J R, Xie S-P, Talley L D. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake[J]. Journal of Climate, 2018, 31(18): 7 459-7 479.
11 Speer K, Rintoul S R, Sloyan B. The diabatic Deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12): 3 212-3 222.
12 Shi Jiuxin,Zhao Jinping. Advances in Chinese studies on water masses, circulation and sea ice in the Southern Ocean(1995-2002)[J]. Advances in Marine Science, 2002, 20(4): 116-126.
史久新,赵进平. 中国南大洋水团、环流和海冰[J]. 海洋科学进展, 2002, 20(4): 116-126.
13 Purkey S G, Johnson G C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s[J]. Journal of Climate, 2012, 25(17): 5 830-5 844.
14 Chen Hongxia, Lin Li'na, Pan Zengdi. An overview of Antarctic circumpolar circumpolar current research[J]. Chinese Journal of Polar Research, 2017, 29(2): 183-193.
陈红霞,林丽娜,潘增弟. 南极绕极流研究进展综述[J]. 极地研究, 2017, 29(2): 183-193.
15 Gao L, Rintoul S R, Yu W. Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage[J]. Nature Climate Change, Springer US, 2018, 8(1): 58-63.
16 Olbers D, Borowski D, V?lker C, et al. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current[J]. Antarctic Science, 2004, 16(4): 439-470.
17 Rintoul S R. The global influence of localized dynamics in the Southern Ocean[J]. Nature, 2018, 558: 209-218.
18 Liu F, Lu J, Garuba O, et al. Sensitivity of surface temperature to oceanic forcing via q-flux Green's function experiments. Part I: Linear response function[J]. Journal of Climate, 2018, 31(9): 3 625-3 641.
19 Li X, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505: 538-542.
20 Li X, Holland D M, Gerber E P, et al. Rossby waves mediate impacts of tropical oceans on west Antarctic atmospheric circulation in austral winter[J]. Journal of Climate, 2015, 28(20): 8 151-8 164.
21 Wang C. Three-ocean interactions and climate variability: A review and perspective[J]. Climate Dynamics, 2019, 53(7/8): 5 119-5 136.
22 Yang Yun, Li Jianping, Xie Fei, et al. Progresses and prospects for north tropical Atlantic mode interannual variability[J]. Advances in Earth Science, 2018, 33(8): 808-817.
杨韵, 李建平, 谢飞, 等. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
23 Ma Hao, Wang Zhaomin, Shi Jiuxin. The role of the southern ocean physical processes in global climate system[J]. Advances in Earth Science,2012,27(4): 398-412.
马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展,2012,27(4): 398-412.
24 Long Shangmin, Xie Shangping, Liu Qinyu, et al. Slow ocean response and the 1.5 and 2 ℃ warming targets[J]. Chinese Science Bulletin, 2018, 63(5/6): 558-570.
龙上敏,谢尚平,刘秦玉,等.海洋对全球变暖的快慢响应与低温升目标[J].科学通报, 2018, 63(5/6), 558-570.
25 Long S-M, Xie S-P, Du Y, et al. Effects of ocean slow response under low warming targets[J]. Journal of Climate, 2020, 33(2): 477-496.
26 Gille S T. Warming of the Southern Ocean since the 1950s[J]. Science, 2002, 295(5 558): 1 275-1 277.
27 Gille S T. Decadal-scale temperature trends in the Southern Hemisphere ocean[J]. Journal of Climate, 2008, 21(18): 4 749-4 765.
28 B?ning C W, Dispert A, Visbeck M, et al. The response of the antarctic circumpolar current to recent climate change[J]. Nature Geoscience, 2008, 1: 864-869.
29 Wijffels S E, Willis J, Domingues C M, et al. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise[J]. Journal of Climate, 2008, 21(21): 5 657-5 672.
30 Roemmich D, Church J, Gilson J, et al. Unabated planetary warming and its ocean structure since 2006[J]. Nature Climate Change, 2015, 5: 240-245.
31 Cheng L, Zhu J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations[J]. Journal of Climate, 2016, 29(15): 5 393-5 416.
32 Good S A, Martin M J, Rayner N A. EN4?: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6 704-6 716.
33 Cai W, Cowan T, Godfrey S, et al. Simulations of processes associated with the fast warming rate of the southern midlatitude ocean[J]. Journal of Climate, 2010, 23(1): 197-206.
34 Purkey S G, Johnson G C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23(23): 6 336-6 351.
35 Durack P J, Gleckler P J, Landerer F W, et al. Quantifying underestimates of long-term upper-ocean warming[J]. Nature Climate Change, 2014, 4: 999-1 005.
36 Schmidtko S, Heywood K J, Thompson A F, et al. Multidecadal warming of Antarctic waters[J]. Science, 2014, 346(6 214): 1 227-1 231.
37 Cheng L, Abraham J, Zhu J, et al. Record-setting ocean warmth continued in 2019[J]. Advances in Atmospheric Sciences, 2020, 37(2): 137-142.
38 Cheng Lijing. SROCC: Assessment of the ocean heat content change [J]. Climate Change Research, 2020, 16(2): 172-181.
成里京. SROCC:海洋热含量变化评估[J]. 气候变化研究进展, 2020, 16(2): 172-181.
39 Xiao Cunde. Changes in Antarctic climate system: Past, present and future [J]. Advances in Climate Change Research, 2008, 4(1): 1-7.
效存德. 南极地区气候系统变化:过去,现在和将来[J]. 气候变化研究进展, 2008, 4(1): 1-7.
40 Gillett N P, Thompson D W J. Simulation of recent Southern Hemisphere climate change[J]. Science, 2003, 302(5 643): 273-275.
41 Fyfe J C, Saenko O A, Zickfeld K, et al. The role of poleward-intensifying winds on Southern Ocean warming[J]. Journal of Climate, 2007, 20(21): 5 391-5 400.
42 Meredith M, Sommerkorn M, Cassotta S, et al. Polar regions [C]//IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 2019.
43 Durack P J, Gleckler P J, Landerer F W, et al. Quantifying underestimates of long-term upper-ocean warming[J]. Nature Climate Change, 2014. DOI:10.1038/NCLIMATE2389.
doi: 10.1038/NCLIMATE2389    
44 Irving D B, Wijffels S, Church J A. Anthropogenic aerosols, greenhouse gases, and the Uptake, transport, and storage of excess heat in the climate system[J]. Geophysical Research Letters, 2019, 46(9): 4 894-4 903.
45 Armour K C, Marshall J, Scott J R, et al. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport[J]. Nature Geoscience, 2016, 9(7): 549-554.
46 Fyfe J C. Southern Ocean warming due to human influence[J]. Geophysical Research Letters, 2006, 33(19): L19701.
47 Swart N C, Fyfe J C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress[J]. Geophysical Research Letters, 2012, 39(16): L16711.
48 Morrison A K, Griffies S M, Winton M, et al. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model[J]. Journal of Climate, 2016, 29(6): 2 059-2 075.
49 Liu W, Lu J, Xie S-P, et al. Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation[J]. Journal of Climate, 2018, 31(12): 4 727-4 743.
50 Swart N C, Gille S T, Fyfe J C, et al. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion[J]. Nature Geoscience, 2018, 11(836/841). DOI:10.1038/s41561-018-0226-1.
doi: 10.1038/s41561-018-0226-1    
51 Thompson D W J, Solomon S, Kushner P J, et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change[J]. Nature Geoscience, 2011, 4(11): 741-749.
52 Talley L D. Shallow, intermediate, and deep overturning components of the global heat budget[J]. Journal of Physical Oceanography, 2003, 33(3): 530-560.
53 Cai W, Bi D, Church J, et al. Pan-oceanic response to increasing anthropogenic aerosols: Impacts on the Southern Hemisphere oceanic circulation[J]. Geophysical Research Letters, 2006, 33: L21707.
54 Cummins P F, Masson D, Saenko O A. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3 790-3 802.
55 Banks H T, Gregory J M. Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake[J]. Geophysical Research Letters, 2006, 33(7): 3-6.
56 Church J A, White N J, Arblaster J M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content[J]. Nature, 2005, 438: 74-77.
57 Held I M, Winton M, Takahashi K, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing[J]. Journal of Climate, 2010, 23(9): 2 418-2 427.
58 Long S-M, Xie S-P, Zheng X-T, et al. Fast and slow responses to global warming: Sea surface temperature and precipitation patterns[J]. Journal of Climate, 2014, 27(1): 285-299.
59 Barnett T. Penetration of human-induced warming into the World Oceans[J]. Science, 2005, 309(5 732): 284-287.
60 Hansen J, Nazarenko L, Ruedy R, et al. Climate Change: Earth's energy imbalance: Confirmation and implications[J]. Science, 2005, 308(5 727): 1 431-1 435.
61 Hansen J, Sato M, Kharecha P, et al. Earth's energy imbalance and implications[J]. Atmospheric Chemistry and Physics, 2011, 11: 13 421-13 449.
62 Hu S, Xie S-P, Liu W. Global pattern formation of net ocean surface heat flux response to greenhouse warming[J]. Journal of Climate, 2020, 33(17): 7 503-7 522.
63 Oke P R, England M H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds[J]. Journal of Climate, 2004, 17(5): 1 040-1 054.
64 Spence P, Fyfe J C, Montenegro A, et al. Southern ocean response to strengthening winds in an eddy-permitting global climate model[J]. Journal of Climate, 2010, 23(19): 5 332-5 343.
65 Winton M, Griffies S M, Samuels B L, et al. Connecting changing ocean circulation with changing climate[J]. Journal of Climate, 2013, 26(7): 2 268-2 278.
66 Chen H, Morrison A K, Dufour C O, et al. Deciphering patterns and drivers of heat and carbon storage in the Southern Ocean[J]. Geophysical Research Letters, 2019, 46(6): 3 359-3 367.
67 Meijers A J S, Bindoff N L, Rintoul S R. Frontal movements and property fluxes: Contributions to heat and freshwater trends in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(8): 1-17.
68 Exarchou E, Kuhlbrodt T, Gregory J M, et al. Ocean heat uptake processes: A model intercomparison[J]. Journal of Climate, 2015, 28(2): 887-908.
69 Gregory J M. Vertical heat transports in the ocean and their effect on time-dependent climate change[J]. Climate Dynamics, 2000, 16: 501-515.
70 Manabe S, Stouffer R J, Spelman M J, et al. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response[J]. Journal of Climate, 1991, 4(8): 785-818.
71 Huang B, Stone P H, Sokolov A P, et al. The deep-ocean heat uptake in transient climate change[J]. Journal of Climate, 2003, 16(9): 1 352-1 363.
72 Dalan F, Stone P H, Kamenkovich I V, et al. Sensitivity of the ocean's climate to diapycnal diffusivity in an EMIC. Part I: Equilibrium state[J]. Journal of Climate, 2005, 18(13): 2 460-2 481.
73 Morrison A K, Saenko O A, Hogg A M C, et al. The role of vertical eddy flux in Southern Ocean heat uptake[J]. Geophysical Research Letters, 2013, 40(20): 5 445-5 450.
74 Ceppi P, Zappa G, Shepherd T G, et al. Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing[J]. Journal of Climate, 2018, 31(3): 1 091-1 105.
75 Zhao J, Barber D, Zhang S, et al. Record low sea-ice concentration in the central Arctic during summer 2010[J]. Advances in Atmospheric Sciences, 2018, 35(1): 106-115.
76 Zhao J, Zhong W, Diao Y, et al. The rapidly changing Arctic and its impact on global climate[J]. Journal of Ocean University of China, 2019, 18(3): 537-541.
77 Hobbs W R, Massom R, Stammerjohn S, et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings[J]. Global and Planetary Change, 2016, 143: 228-250.
78 Bitz C M, Gent P R, Woodgate R A, et al. The influence of sea ice on ocean heat uptake in response to increasing CO2[J]. Journal of Climate, 2006, 19(11): 2 437-2 450.
79 Kirkman C H, Bitz C M. The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming[J]. Journal of Climate, 2011, 24(9): 2 224-2 237.
80 Liu J, Curry J A. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice[J]. Proceedings of the National Academy of Sciences, 2010, 107(34): 14 987-14 992.
81 Xu L, Xie S-P, McClean J L, et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 4 867-4 886.
82 Church J A, White N J, Konikow L F, et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008[J]. Geophysical Research Letters, 2011, 38: L18601.
83 Church J A, Monselesan D, Gregory J M, et al. Evaluating the ability of process based models to project sea-level change[J]. Environmental Research Letters, 2013, 8(1): 014051.
84 Spence P, Holmes R M, Hogg A M C, et al. Localized rapid warming of West Antarctic subsurface waters by remote winds[J]. Nature Climate Change, 2017, 7(8): 595-603.
85 Xie S-P, Deser C, Vecchi G A, et al. Global warming pattern formation: Sea surface temperature and rainfall[J]. Journal of Climate, 2010, 23(4): 966-986.
86 Hwang Y T, Xie S-P, Deser C, et al. Connecting tropical climate change with Southern Ocean heat uptake[J]. Geophysical Research Letters, 2017, 44(18): 9 449-9 457.
87 Zheng X-T, Hui C, Xie S-P, et al. Intensification of El Ni?o rainfall variability over the tropical Pacific in the slow oceanic response to global warming[J]. Geophysical Research Letters, 2019, 46(4): 2 253-2 260.
88 Zappa G, Ceppi P, Shepherd T G. Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land[J]. Proceedings of the National Academy of Sciences, 2020, 117(9): 4 539-4 545.
89 Yang Jing, Zheng Xiaotong. The intertropical convergence zone shift and its relationship with atmospheric energy transport change at different stages of global warming[J]. Periodical of Ocean University of China,2020,50(4):1-11.
杨静,郑小童. 全球变暖不同阶段热带辐合带的移动及其与大气能量输送的关系[J]. 中国海洋大学学报, 2020, 50(4): 1-11.
90 Xiao Cunde, Chen Zhuoqi, Jiang Liming, et al. A study of monitoring, simulation and climate impact of greenland ice sheet[J]. Advances in Earth Science, 2019, 34(8): 781-786.
效存德,陈卓奇,江利明,等. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[3] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[4] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[5] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[6] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[11] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[12] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[13] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[14] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[15] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
阅读次数
全文


摘要