地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 883 -898. doi: 10.11867/j.issn.1001-8166.2021.085

综述与评述    下一篇

海洋涡旋在模态水形成与输运中的作用
许丽晓 1, 2( ),刘秦玉 1, 2( )   
  1. 1.中国海洋大学深海圈层与地球系统前沿科学中心&物理海洋教育部重点实验室,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室,山东 青岛 266237
  • 收稿日期:2021-06-07 修回日期:2021-08-25 出版日期:2021-09-10
  • 通讯作者: 刘秦玉 E-mail:lxu@ouc.edu.cn;liuqy@ouc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“海洋涡旋在北太平洋副热带西部模态水输运中的作用”(41876006)

Mesoscale Eddy Effects on Subduction and Transport of the North Pacific Subtropical Mode Water

Lixiao XU 1, 2( ),Qinyu LIU 1, 2( )   

  1. 1.Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory,Ocean University of China,Qingdao 266100,China
    2.Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
  • Received:2021-06-07 Revised:2021-08-25 Online:2021-09-10 Published:2021-10-15
  • Contact: Qinyu LIU E-mail:lxu@ouc.edu.cn;liuqy@ouc.edu.cn
  • About author:XU Lixiao (1985-), female, Laiwu County, Shandong Province, Associated Professor. Research areas include air-sea interaction. E-mail: lxu@ouc.edu.cn
  • Supported by:
    the Natural Science Foundation of China "Mesoscale eddy effect on the transport of the North Pacific Subtropical Mode Water"(41876006)

模态水在全球气候变化中有着重要作用。但是由于缺乏海洋次表层的高分辨率观测,对空间尺度为百公里的海洋中尺度涡旋如何影响空间尺度大于千公里的模态水的认识仍然欠缺。为了解决这一科学难题,在科技部的支持下,实施了一次成功的海上观测试验。系统梳理了基于该观测数据所发表的有关涡旋影响模态水潜沉和输运的主要研究成果:①捕捉并揭示了中尺度涡导致混合层水潜沉的过程和动力机制;②发现了中尺度涡携带模态水迁移的新路径;③阐明了模态水多核结构的形成机制。研究结果揭示了黑潮延伸体海域中尺度涡旋影响大尺度模态水的物理本质,为该海域多时空尺度海洋—大气相互作用作出了一定的贡献。通过对该次观测试验结果的分析和总结,得到了如下新的科学推论:海洋次中尺度过程对模态水的形成和耗散也具有重要影响。

Mode Mode water is important for the climate system as memories of climate variability and by 'breathing in' anthropogenic carbon dioxide. Due to the lack of subsurface observations, many fundamental questions remain regarding how it is subducted and transported by mesoscale eddies.

Results

from a field campaign from March 2014 that captured the eddy effects on mode water subduction and transport south of the Kuroshio Extension east of Japan are reviewed here. The experiment deployed 17 Argo floats in an Anticyclonic Eddy (AE) with enhanced daily sampling. Analysis of over 5 000 hydrographic profiles following the eddy reveals that: ①the eddy-induced North Pacific Subtropical Mode Water (STMW) subduction process is successfully captured for the first time, and the eddy subduction mechanism is revealed. We find potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AE core, with enhanced subduction near the southeastern rim of the AE. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. ②A new mode water transport pathway by anticyclonic eddies is found. AEs transport STMW westward across the Izu Ridge through a bathymetric gap between the Hachijojima and Bonin Islands, forming a cross-ridge pathway for STMW transport. Because of the eddy transport, the shallow STMW (< 400 m) intrudes through the gap westward, which is also observed in Argo climatology. ③the formation mechanism of STMW multicore structure is clarified. We find that AEs formed east of 150°E could trap the local cold and dense STMW and migrate westward. Since sea surface temperatures increase toward the west, warmer and lighter STMWs are formed during the winter ventilation process as the AEs move westward. The newly formed STMW ride on the preexisting cold and dense STMW inside the eddy core, forming a multicore structure in the STMW. These findings update the traditional understanding of mode water. Mesoscale eddies are usually accompanied by submesoscale processes, whose effects on mode water seems to be considerably significant as well and need to be studied in the future.

中图分类号: 

图2 涡旋引起潜沉过程示意图
位于黑潮延伸体海域反气旋涡东侧的南向流可以将深混合层里的低位涡水潜沉进入浅混合层下面的温跃层;黑色粗线为气候态的等位势密度线,绿色实线为混合层深度,涡旋外围旋转流速用红色加粗箭头表示,气候态背景流则用蓝色箭头表示
图5 STMW核心密度面上的反气旋涡特征
(a)~(c)混合层深度(MLD, m);(d)~(f) 表观耗氧量 (mL/kg); (g)~(i) 位涡 (10-10m-1 s-1)。坐标零点代表反气旋涡的核心,定义涡旋核心的边界为相对涡度为0的闭合等值线,此处将涡旋的边界标准化为[-1, 1]。(Δx, Δy) 坐标的[-1,1]代表标准化的涡旋半径。箭头表示地转流(m/s)。最底排的(j)表示在STMW核心密度面(25.3 σθ)上纬向平均(135°~150°E)的PV沿经向的分布。蓝色实线表示3~4月平均结果,绿色虚线为5~6月平均,红色长虚线为7~8月平均。在对应时间内涡旋所在的纬度用黑色*标出。OFES模拟观测采样的结果:(k)1个涡旋个例,(l)14个涡旋个例的结果,颜色表示PV,箭头为地转流速
图6 反气旋涡引起的PV经向输运 x坐标为穿过涡心的纬向断面,[-1,1]内代表涡旋的核心, 单位为标准化的涡旋半径。最左列(a),(d)和(g)为涡旋的切向速度(v'r单位m/s),中间列(b),(e)和(h)为与纬向断面上气候平均态PV相比的PV异常(q',单位10-10 m-1 s-1),最右列(c),(f)和(i)为涡旋引起的经向PV输运(v'rq',单位10-10 s-2)。黑色点表示位于涡心内(这里涡旋携带输运为主),红色点表示涡旋核心的外围(±[1,2]涡旋切向流速最强的地方,涡旋平流输运为主)。涡心携带输运(Cy)在最右列用蓝色点表示。从上数第一排(a)~(c)为Argo观测结果,(d)~(f)为OFES其中的一个涡旋个例结果,(g)~(i)为OFES14个涡旋个例的结果。绿色实线代表每0.1 bin内所有样本的平均值,而(d)~(i)的黄色实线则表示用OFES完整数据计算的“真实值” 
图3 P-MoVE Argo CTD投放站位图
黑色三角为17个P-MoVE Argo浮标的投放位置,黑色三角和圆点处都有CTD站位,背景颜色为2014年3月27日实时的海平面异常
图4 P-MoVE Argo浮标及其追踪的2个反气旋涡轨迹图
红色线(蓝色线)表示AE1(AE2)的轨迹;这2个反气旋涡的生成地点用五角星表示,开始被P-MoVE Argo浮标追踪的位置用方框表示;P-MoVE Argo浮标具有高分辨率(2~10 m)的垂向温度盐度及溶解氧廓线;P-MoVE Argo浮标站位用绿色点表示,橙色点为截止2017年其他垂向小于10 m分辨率的Argo浮标站位。灰色阴影表示水深浅于4 000 m的地形分布(CI:1 000 m)
图1 图1   观测和不同分辨率模式中3月北太平洋副热带模态水核心密度
(a)观测(Obs),(b) (1/10)°(涡分辨率)并行海洋模式(POPH),(c)1°(低分辨率)并行海洋模式(POPL)结果37;深蓝色代表新潜沉的低位涡(10-10m-1s-1)模态水,黑线代表等密度面上的流线,紫色实线为混合层深度锋面
图7
根据P-MoVE Argo浮标重构的[(a)~(c)]AE1和[(d)~(f)]AE2的垂直结构剖面图
图9 经度—深度坐标下位涡、位势密度、扩散系数和耗散率在(左)AE1和(右)AE2移动轨迹上的分布特征
(a),(b)位涡(颜色,10 m-1·s-1)及位势密度(黑色等值线,25.0和27.0σθ加粗显示),海底地形用黑色阴影表示;在地形上方的时间标签表示当AE1和AE2到达该处的时间;y坐标在-1 000 m以下非等间隔标注;(c),(d)扩散系数(log10K, 单位:m2/s);(e),(f)耗散率(log10ε,单位:m2/s3
图10  2901554Argo浮标自2015131日至2015421日之间垂向剖面的演化为例,来示例模态水多核结构的形成过程
颜色阴影代表PV(10-10 m-1s-1),黑色等值线为位势温度(),红色等值线为混合层深度
图8 反气旋涡(AEs)携带副热带模态水(STMW)穿越伊豆海脊罅隙向西输运通道
(a)在黑潮延伸体以南伊豆海脊以东形成的反气旋涡的移动轨迹(红色线条),蓝点(绿色三角)表示AE的形成位置(消亡位置);(b)较强北太平洋副热带模态水出现概率密度分布(Probability Density Function,PDF,%);(c)较强北太平洋副热带中层水出现概率密度分布(PDF,%)。(b),(c)中的红色等值线表示 1 500 m水深线,可代表伊豆海脊的位置
图1 观测和不同分辨率模式中3月北太平洋副热带模态水核心密度
(a)观测(Obs),(b) (1/10)°(涡分辨率)并行海洋模式(POPH),(c)1°(低分辨率)并行海洋模式(POPL)结果 37 ;深蓝色代表新潜沉的低位涡(10 -10m -1s -1)模态水,黑线代表等密度面上的流线,紫色实线为混合层深度锋面
Fig. 1 Isopycnal PV on the core layer of STMW in March for gridded observations and models of different resolution
(a) Observations; (b)The (1/10)° high resolution Parallel Ocean Program (POPH); (c)The 1° low resolution Parallel Ocean Program (POPL) results 37 . The newly subducted mode water of low PV is shown in blue shading(10 -10m -1s -1); The streamlines are superimposed in black line; The winter MLD front is denoted in thick magenta line
图2 涡旋引起潜沉过程示意图
位于黑潮延伸体海域反气旋涡东侧的南向流可以将深混合层里的低位涡水潜沉进入浅混合层下面的温跃层;黑色粗线为气候态的等位势密度线,绿色实线为混合层深度,涡旋外围旋转流速用红色加粗箭头表示,气候态背景流则用蓝色箭头表示
Fig. 2 Schematic diagram illustrates the eddy subduction process
On the eastern rim of anticyclonic eddies south of the Kuroshio Extension region, the southward eddy flow advects low PV water from the northern deep mixed layer into the main thermocline . The climatological mean isopycnals are denoted in black thick lines, and the MLD in green solid line. While the advective current outside the eddy core flow is shown in red thick arrows,the mean flow is denoted in blue arrow
图3 P-MoVE Argo CTD投放站位图
黑色三角为17个P-MoVE Argo浮标的投放位置,黑色三角和圆点处都有CTD站位,背景颜色为2014年3月27日实时的海平面异常 38
Fig. 3 Deployment stations of the P-MoVE Argo floats and CTD
Black triangles indicate deployment stations of the 17 P-MoVE Argo floats. Both black triangles and dots have CTD stations. Color shading is SLA (Sea Level Anomaly) 38 on March 27, 2014
图4 P-MoVE Argo浮标及其追踪的2个反气旋涡轨迹图 39
红色线(蓝色线)表示AE1(AE2)的轨迹;这2个反气旋涡的生成地点用五角星表示,开始被P-MoVE Argo浮标追踪的位置用方框表示;P-MoVE Argo浮标具有高分辨率(2~10 m)的垂向温度盐度及溶解氧廓线;P-MoVE Argo浮标站位用绿色点表示,橙色点为截止2017年其他垂向小于10 m分辨率的Argo浮标站位。灰色阴影表示水深浅于4 000 m的地形分布( CI:1 000 m) 39
Fig. 4 Stations of the 17 P-MoVE Argo floats and trajectories of the two AEs 39
Trajectories of AE1 (AE2) are shown in red (blue) line; the star signs denote where the AEs form, and the squares denote where the AEs begin to be tracked by our Argo floats. Green dots are samples from our 17 P-MoVE Argo floats, while orange ones are from other programs with 15 m resolution or better in the upper 1 000 m. The grey shading indicates water depth shallower than 4 000 m ( CI = 1 000 m) 39
图5 STMW核心密度面上的反气旋涡特征
(a)~(c)混合层深度(MLD, m);(d)~(f) 表观耗氧量 (mL/kg); (g)~(i) 位涡 (10 -10m -1 s -1)。坐标零点代表反气旋涡的核心,定义涡旋核心的边界为相对涡度为0的闭合等值线,此处将涡旋的边界标准化为[-1, 1]。(Δ x, Δ y) 坐标的[-1,1]代表标准化的涡旋半径。箭头表示地转流(m/s)。最底排的(j)表示在STMW核心密度面(25.3 σθ)上纬向平均(135°~150°E)的PV沿经向的分布。蓝色实线表示3~4月平均结果,绿色虚线为5~6月平均,红色长虚线为7~8月平均。在对应时间内涡旋所在的纬度用黑色*标出。OFES模拟观测采样的结果:(k)1个涡旋个例,(l)14个涡旋个例的结果,颜色表示PV,箭头为地转流速 38
Fig. 5 The AE fields in the core layer of STMW
(a)~(c) mixed layer depth (MLD, m), (d)~(f) AOU (mL/kg), and (g)~(i) PV (10 -10m -1 s -1). A coordinate system (Δ x, Δ y) is used relative to the AC centre. The outer boundary of the eddy core, defined as the zero relative vorticity contour, is normalized here as between [-1, 1]. Arrows denote geostrophic currents in m/s. The bottom left plot (j) denotes the zonally averaged (135°~150°E) PV on the core layer of STMW (25.3 σθ) as a function of latitude: the solid blue line for March-April, dotted green line for May-June and dash red line for July-August. The latitude of AC is marked in black * in (j). (k)~(l) Data dots of PV (color shading) and geostrophic current (vectors) for March to April, sampled by synthetic Argo profiles deployed in OFES to mimic the sampling of the field campaign; (k) One AE in OFES and (l) 14 AEs in OFES 38
图6 反气旋涡引起的PV经向输运
x坐标为穿过涡心的纬向断面,[-1,1]内代表涡旋的核心, 单位为标准化的涡旋半径。最左列(a),(d)和(g)为涡旋的切向速度( v ' r 单位m/s),中间列(b),(e)和(h)为与纬向断面上气候平均态PV相比的PV异常( q ' ,单位10 -10 m -1 s -1),最右列(c),(f)和(i)为涡旋引起的经向PV输运( v ' r q ' ,单位10 -10 s -2)。黑色点表示位于涡心内(这里涡旋携带输运为主),红色点表示涡旋核心的外围(±[1,2]涡旋切向流速最强的地方,涡旋平流输运为主)。涡心携带输运( C y )在最右列用蓝色点表示。从上数第一排(a)~(c)为Argo观测结果,(d)~(f)为OFES其中的一个涡旋个例结果,(g)~(i)为OFES14个涡旋个例的结果。绿色实线代表每0.1 bin内所有样本的平均值,而(d)~(i)的黄色实线则表示用OFES完整数据计算的“真实值” 38
Fig. 6 The meridional PV advection by AEs
The abscissa represents zonal sections across the AE center. Recall that [-1, 1] defines the eddy core. The unit is the normalized distance from the eddy centre to the outer boundary of the eddy core. (a),(d),(g) The tangential velocity of AC ( v ' r in m/s); (b),(e),(h) the PV anomaly from the zonal-averaged background climatology ( q ' in 10 -10 m -1 s -1); and (c),(f),(i) the eddy-advective transport ( v ' r q ' in 10 -10 s -2). The black dots are within the eddy core where the integrated eddy flow transport is offset, and the red dots are in ±[1, 2]. The eddy-trapping transport ( C y in blue dots) is superimposed in the right panels. (a)~(c) for Argo observations, (d)~(f) for one AE and (g)~(i) for 14 AEs in OFES. The green lines denote the average for each 0.1 bin calculated with the Argo sampling. The yellow lines in (d)~(i) are the exact calculation of the time average based on the full model data 38
图7 根据P-MoVE Argo浮标重构的[(a~c)]AE1和[(d~f)]AE2的垂直结构剖面图
Black solid contours are potential density in 0.2 kg/m intervals, and the 25.0 and 25.4 σθ isopycnals are thickened to highlight STMW 40
Fig. 7 Anatomy of AE1 [(a~c)] and AE2 [(d~f)] based on the P-MoVE Argo profiles等值线为位势密度(kg/m),其中25.0 和25.4 σθ等密度线被加粗用来表示STMW的范围 40
图8 反气旋涡(AEs)携带副热带模态水(STMW)穿越伊豆海脊罅隙向西输运通道
(a)在黑潮延伸体以南伊豆海脊以东形成的反气旋涡的移动轨迹(红色线条),蓝点(绿色三角)表示AE的形成位置(消亡位置);(b)较强北太平洋副热带模态水出现概率密度分布(Probability Density Function,PDF,%);(c)较强北太平洋副热带中层水出现概率密度分布(PDF,%)。(b),(c)中的红色等值线表示 1 500 m水深线,可代表伊豆海脊的位置 40
Fig. 8 AEs trap and transport STMW westward across the bathymetry gap of the Izu Ridge
(a) Trajectories (red lines) for the AEs generated south of KE and east of the Izu Ridge. The AEs' generation (decay) sites are marked in blue (green) filled circles (triangles). The probability density function (PDF, %) of (b) the strong STMW, and (c) the strong NPIW. The 1 500 m bathymetry is superimposed in (b),(c) in red contour to denote the position of the Izu Ridge 40
图9 经度—深度坐标下位涡、位势密度、扩散系数和耗散率在(左)AE1和(右)AE2移动轨迹上的分布特征
(a),(b)位涡(颜色,10 m -1·s -1)及位势密度(黑色等值线,25.0和27.0 σθ加粗显示),海底地形用黑色阴影表示;在地形上方的时间标签表示当AE1和AE2到达该处的时间;y坐标在-1 000 m以下非等间隔标注;(c),(d)扩散系数(log 10 K, 单位:m 2/s);(e),(f)耗散率(log 10 ε单位:m 2/s 3
Fig. 9 Depth-longitude distributions of PV potential density diapycnal diffusivity and dissipation rate averaged along the trajectory of left AE1 and right AE2
(a), (b) PV (color shade in 10 - 10 m - 1 s - 1 ) and potential density (black contours, thickened to highlight the 25.0 and 27.0 σθ), along with the sea floor topography in black shade; the time tag above sea floor topography denotes when AE1 and AE2 arrived at the longitude. The y axis is irregularly spaced below -1 000 m. (c), (d) Diapycnal diffusivity (log 10 K in ? m 2 / s ). (e), (f) Dissipation rate (log 10 ε in m 2 / s 3
图10 2901554Argo浮标自2015131日至2015421日之间垂向剖面的演化为例,来示例模态水多核结构的形成过程
颜色阴影代表PV(10 -10 m -1s -1),黑色等值线为位势温度( ),红色等值线为混合层深度 41
Fig. 10 The STMW multicore structure formation process based on vertical sections of Argo Float 2901554 between January 31 2015 and April 21 2015
PV is shown by color shade (10 -10 m -1s -1), and potential temperature ( ) is superimposed in black contours, the red curves represent MLD 41
1 LING L L, FAN W, RUI X H. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening[J]. Deep Sea Research Part I: Dceanographic Research Papers, 2011, 58(6):658-667.
2 BATES N R, PEQUIGNET A C, JOHNOSN R J, et al. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean[J]. Nature, 2002, 420(6 915):489-493.
3 PALTER J, LOZIER M, BARBER R. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre[J]. Nature, 2005, 437(7 059):687-692.
4 MASUZAWA J. Subtropical mode water[J]. Deep Sea Research, 1969, 16(5):463-472.
5 SUGA T, HANAWA K, TOBA Y. Subtropical mode water in the 137°E section[J]. Journal of Physical Oceanography, 2010, 19(10):1 605-1 619.
6 SUGA T, MOTOKI K, AOKI Y, et al. The North Pacific climatology of winter mixed layer and mode waters[J]. Journal of Physical Oceanography, 2004, 34(1):3-22.
7 LIU Q, HU H. A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island[J]. Geophysical Research Letters, 2007, 34(12). DOI: 10.1029/2007GL029510.
doi: 10.1029/2007GL029510    
8 HU Haibo. Subduction of the low potential vorticity water in the Central North Pacific and transportation to the East of Taiwan Island[D]. Qingdao: Ocean University of China, 2008.
胡海波. 北太平洋低位势涡度水的潜沉和向台湾以东的输运[D]. 青岛:中国海洋大学,2008.
9 HANANWA K. Interannual variations in the wintertime outcrop area of Subtropical Mode Water in the western North Pacific Ocean[J]. Atmosphere-Ocean, 1987, 25(4):358-374.
10 KUBOKAWA A, INUI T. Subtropical countercurrent in an idealized ocean GCM [J]. Journal of Physical Oceanography, 1999, 29(6):1 303-1 313.
11 KOBASHI F, MITSUDERA H, XIE S P. Three subtropical fronts in the North Pacific: observational evidence for mode water‐induced subsurface frontogenesis[J]. Journal of Geophysical Research: Oceans, 2006, 111:C09033.
12 DESER C, ALEXANDER M A, TIMLIN M S. Upper-ocean thermal variations in the North Pacific during 1970-1991[J]. Journal of Climate, 1946, 9(8):1 840-1 855.
13 XIE S P, KUNITANI T, KUBOKAWA A, et al. Interdecadal thermocline variability in the North Pacific for 1958-1997: a GCM simulation[J]. Journal of Physical Oceanography, 2000, 30:2 798-2 813.
14 XIE S P, XU L X, LIU Q, et al. Dynamical role of mode water ventilation in decadal variability in the Central Subtropical Gyre of the North Pacific[J]. Journal of Climate, 2011, 24(4):1 212-1 225.
15 XU L X, XIE S P, LIU Q, et al. Response of the North Pacific Subtropical Countercurrent and its variability to global warming[J]. Journal of Oceanography, 2012, 68:127-137.
16 XU L X, XIE S P, LIU Q. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections[J]. Journal of Geophysical Research: Oceans, 2012, 117:C12009.
17 WU B, LIN X, YU L. North Pacific subtropical mode water is controlled by the Atlantic Multidecadal Variability[J]. Nature Climate Change, 2020, 10(3):238-243.
18 MEN W, HE J, WANG F, et al. Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports, 2015, 5:7757.
19 AOYAMA M, UEMATSU M, TSUMUNE D, et al. Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released 134Cs and 137Cs[J]. Biogeosciences, 2013, 10(5):3 067-3 078.
20 HANAWA K, TALLEY L D. Mode waters[M]// CHURCH J. Ocean circulation and climateby. London, United Kingdom: Academic Press, 2001:373-386.
21 OKA E, BO Q. Progress of North Pacific mode water research in the past decade[J]. Journal of Oceanography, 2012, 68(1):5-20.
22 CHELTO D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
23 GENT P R, MCWILLIAMS J C. Isopycnal mixing in Ocean Circulation Models[J]. Journal of Physical Oceanography, 1990, 20(1):150-155.
24 ZHANG Z, WEI W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345:322-324.
25 UEHARA H, SUGA T, HANAWA K, et al. A role of eddies in formation and transport of North Pacific Subtropical Mode Water[J]. Geophysical Research Letters, 2003, 30(13):1705.
26 PAN Aijun, LIU Qinyu. Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific Subtropical Mode Water[J]. Chinese Science Bulletin, 2005, 50(14): 1 523-1 530.
潘爱军,刘秦玉. 北太平洋副热带西部模态水形成区海洋涡旋对冬季垂直混合过程的影响[J]. 科学通报,2005,50(14):1 523-1 530.
27 QIU B, HACKER P, CHEN S, et al. Observations of the Subtropical Mode water evolution from the Kuroshio Extension System study[J]. Journal of Physical Oceanography, 2006, 36(3): 457-473.
28 OKA E, SUGA T, SUKIGARA C, et al. "Eddy Resolving" observation of the North Pacific Subtropical Mode Water[J]. Journal of Physical Oceanography, 2011, 41(4):666-681.
29 KOUKETSU S, TOMITA H, OKA E, et al. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific[J]. Journal of Oceanography, 2012, 68(1):63-77.
30 LIU C, LI P. The impact of meso-scale eddies on the Subtropical Mode Water in the western North Pacific[J]. Journal of Ocean University of China, 2013, 12(2):230-236.
31 MARSHALL D. Subduction of water masses in an eddying ocean[J]. Journal of Marine Research, 1997, 55(2):201-222.
32 QU T, XIE S P, MITSUDERA H, et al. Subduction of the North Pacific Mode Waters in a Global High-Resolution GCM[J]. Journal of Physical Oceanography, 2002, 32(3):746-763.
33 RAINVILLE L, JAYNE S R, MCCLEANcclean J L, et al. Formation of Subtropical Mode Water in a high-resolution ocean simulation of the Kuroshio Extension region[J]. Ocean Modelling, 2007, 17(4):338-356.
34 NISHIKAWA S, TSUJINO R, SAKAMOTO R, et al. Effects of Mesoscale Eddies on Subduction and Distribution of Subtropical Mode Water in an Eddy-Resolving OGCM of the western North Pacific[J]. Journal of Physical Oceanography, 2010, 40(8):1 748-1 765.
35 STOMMEL H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(7):3 051-3 055.
36 HUANG R X, QIU B. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific[J]. Journal of Physical Oceanography, 1994,24(7):1 608-1 622.
37 XU L X, XIE S P, MCCLEAN J L, et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research Oceans, 2015, 119(8):4 867-4 886.
38 XU L X, LI P, XIE S P, et al. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific[J]. Nature Communications, 2016, 7:10505.
39 XU L X, XIE S P, JING Z, et al. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge[J]. Geophysical Research Letters, 2017, 44:1 857-1 865.
40 XU L X, XIE S P, LIU Q, et al. Evolution of the North Pacific Subtropical Mode Water in Anticyclonic Eddies[J]. Journal of Geophysical Research: Oceans, 2017, 122:10 118-10 130.
41 LIU C, XU L X, XIE S P, et al. Effects of anticyclonic eddies on the multicore structure of the North Pacific Subtropical Mode Water based on argo observations[J]. Journal of Geophysical Research Oceans, 2019, 124(4):8 400-8 413.
42 DING Y, XU L X, ZHANG Y. Impact of anticyclonic eddies under stormy weather on the mixed layer variability in April south of the Kuroshio Extension[J]. Journal of Geophysical Research: Oceans, 2021, 126:e2020JC016739.
43 CUSHMAN-ROISIN B. Subduction[M]// MULLER P, HENDERSON D. Dynamics of the oceanic surface mixed layer. Proceedings of 'Aha Huliko' a Hauaiian Winter workshop (4th).Haeaii Iustitute of Geophysics, 1987:181-196.
44 WILLIAMS R G. The Influence of air-sea interaction on the ventilated thermocline[J]. Journal of Physical Oceanography, 1989, 19(9):1 255-1 267.
45 WILLIAMS R G. The role of the mixed layer in setting the potential vorticity of the main thermocline[J]. Journal of Physical Oceanography, 1991, 21(12):1 803-1 814.
46 BISHOP S P, BRYAN F O. A comparison of Mesoscale Eddy Heat Fluxes from observations and a High-Resolution Ocean Model simulation of the Kuroshio Extension[J]. Journal of Physical Oceanography, 2013, 43(12):2 563-2 570.
47 OKA E, BO Q, KOUKETSU S, et al. Decadal seesaw of the Central and Subtropical Mode Water formation associated with the Kuroshio Extension variability[J]. Journal of Oceanography, 2012, 68(2):355-360.
48 FLIERL G R. Particle motions in large-amplitude wave fields[J]. Geophysical & Astrophysical Fluid Dynamics, 1981,18(1/2):39-74.
49 LEE M M, MARSHALL D P, WILLIAMS R G. On the eddy transfer of tracers: advective of diffusive?[J]. Journal of Marine Research, 1997, 55(3): 483-505.
50 WANG Hui, WANG Zhaoyi, ZHU Xueming, et al. Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi Nuclear Power Plant in the North Pacific Ocean[J]. Chinese Science Bulletin, 2012, 5 757(22): 2 111-2 118.
王辉,王兆毅,朱学明,等. 日本福岛放射性污染物在北太平洋海水中的输运模拟与预测[J]. 科学通报,2012,57(22):2 111-2 118.
51 GAO W, LI P, XIE S P, et al. Multicore structure of the North Pacific subtropical mode water from enhanced Argo observations[J]. Geophysical Research Letters, 2016, 43(3):1 249-1 255.
52 SUKIGARA C, SUGA T, SAINO T, et al. Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific[J]. Journal of Oceanography, 2011, 67(1):77-85.
[1] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
阅读次数
全文


摘要