地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 899 -910. doi: 10.11867/j.issn.1001-8166.2021.089

综述与评述 上一篇    下一篇

多主体建模在水资源管理中的应用:进展与展望
原世伟 1, 4( ),李新 2, 3, 4( ),杜二虎 5   
  1. 1.中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室,甘肃 兰州 730000
    2.中国科学院 青藏高原研究所 青藏高原地球系统科学国家重点实验室,北京 100101
    3.中国科学院 青藏高原地球科学卓越创新中心,北京 100101
    4.中国科学院大学,北京 100049
    5.南方科技大学 环境科学与工程学院,深圳 518055
  • 收稿日期:2021-06-30 修回日期:2021-08-13 出版日期:2021-09-10
  • 通讯作者: 李新 E-mail:yuansw@lzb.ac.cn;xinli@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金重点项目“黄河源冻土区生态水文过程对气候变化的响应”(41630856);国家自然科学基金青年科学基金项目“干旱地区农业水资源管理对水文过程的影响机理研究”(51909118)

Progress and Prospect of Agent-Based Modeling for Water Resources Management

Shiwei YUAN 1, 4( ),Xin LI 2, 3, 4( ),Erhu DU 5   

  1. 1.Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.Key Laboratory of Tibetan Plateau Earth System Science,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    3.Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China
    4.University of the Chinese Academy of Sciences,Beijing 100049,China
    5.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China
  • Received:2021-06-30 Revised:2021-08-13 Online:2021-09-10 Published:2021-10-15
  • Contact: Xin LI E-mail:yuansw@lzb.ac.cn;xinli@itpcas.ac.cn
  • About author:YUAN Shiwei (1992- ), male, Jiaozuo City, Henan Province, Ph.D student. Research areas include watershed resources management. E-mail: yuansw@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Responses of eco-hydrological processes to climate change in the permafrost region of the source of the Yellow River"(41630856);"Study on the influence mechanism of agricultural water resources management on hydrological process in arid region"(51909118)

多主体建模作为研究“人类与自然耦合系统”等复杂适应性系统的重要工具,已经被广泛地应用于水资源管理领域。在调研国内外重要研究的基础上,回顾了多主体建模的基础理论、建模工具和框架,并对多主体建模在城市水资源管理、农业水资源管理和流域水资源综合管理3个方面的研究和应用进行了阶段性总结。针对当前研究的不足和难点,结合我国水资源管理的研究现状,提出以下4个研究重点:①加强主体行为决策规则刻画;②加强模型验证和评估研究;③开展代表性流域多主体建模研究;④推动学科交叉和综合集成研究。多主体建模能够揭示人类活动—水文循环的互馈机制,为水资源及水环境的可持续利用和管理提供政策建议,加强多主体建模在水资源管理领域的研究可为水资源管理提供新的思路,推动我国水资源的可持续发展。

Agent-Based Modeling (ABM) has proved to be an efficient and powerful tool to study coupled human and natural systems. In recent years, the use of ABM to track water resources management issues is increasingly popular. Based on the review at the interface of ABM and water resources management studies, the techniques, progresses, advantages and limitations are summarized. Three topic areas are identified, addressing different research issues in the field: urban water resources management, agricultural water resources management and integrated watershed water resources management. Overall, with ABM, human decisions and behaviors are linked with water systems. The underlying feedback mechanisms between human and water systems can be revealed and used for policy and strategy planning. However, there still exist some limitations that need to be improved through the following ways. Firstly, more realistic human decision rules are certainly needed. Machine learning and big data techniques can be applied for this purpose. Additionally, the validation and evaluation methods suitable for ABM should be developed and enhanced. Furthermore, it is recommended to continuously conduct researches at a representative basin to advance the application of ABM for water resources management. More importantly, multi-disciplines collaborations such as involving more social and psychological sciences in ABM should be promoted. In conclusion, ABM provides a new insight to deal with water resources management issues. Strengthening the application of ABM in water resources management could promote the sustainable management and development of water resources around the world.

中图分类号: 

图1 多主体建模在水资源管理中的应用
Fig. 1 Application of agent-based modeling in water resources management
图2 多主体模型组成(a)和层次结构(b
Fig. 2 Composition a and hierarchy b of an agent-based model
表1 常用多主体建模工具比较
Table 1 Comparisons of common tools used for Agent-Based Modeling
图3 ODDOverview-Design concepts-Details)框架(据参考文献[ 34 ]修改)
Fig. 3 ODD Overview-Design concepts-Details protocol modified after reference 34 ])
图4 城市水资源管理多主体模型框架
Fig. 4 Agent-based modeling framework for urban water resources management
图5 农业水资源管理多主体模型框架
Fig. 5 Agent-based modeling framework for agricultural water resources management
图6 流域水资源综合管理多主体模型框架
Fig. 6 Agent-based modeling framework for integrated watershed water resources management
1 WADA Y, FL?RKE M, HANASAKI N, et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches [J]. Geoscientific Model Development, 2016, 9(1): 175-222.
2 FL?RKE M, KYNAST E, B?RLUND I, et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study [J]. Global Environmental Change, 2013, 23(1): 144-156.
3 SHIKLOMANOV I A. Appraisal and assessment of world water resources [J]. Water International, 2000, 25(1): 11-32.
4 V?R?SMARTY C J, GREEN P, SALISBURY J, et al. Global water resources: vulnerability from climate change and population growth [J]. Science, 2000, 289(5 477): 284-288.
5 WADA Y, BEEK L P H VAN, WANDERS N, et al. Human water consumption intensifies hydrological drought worldwide [J]. Environmental Research Letters, 2013, 8(3): 034036.
6 BIEMANS H, HADDELAND I, KABAT P, et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century [J]. Water Resources Research, 2011, 47(3): W03509.
7 HADDELAND I, HEINKE J, BIEMANS H, et al. Global water resources affected by human interventions and climate change [J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3 251-3 256.
8 V?R?SMARTY C J, HOEKSTRA A Y, BUNN S E, et al. Fresh water goes global [J]. Science, 2015, 349(6 247): 478-479.
9 LI Xin, CHENG Guodong, GE Yingchun, et al. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 890-914.
10 HOEKSTRA A Y, MEKONNEN M M. The water footprint of humanity [J]. Proceedings of the National Academy of Sciences, 2012, 109(9): 3 232-3 237.
11 VLIET M T H VAN, FL?RKE M, WADA Y. Quality matters for water scarcity [J]. Nature Geoscience, 2017, 10(11): 800-802.
12 YOU Jinjun, WANG Hao, GAN Hong. Current status and prospect of study on simulation model of water resources system[J]. Advances in Water Science, 2006, 17(3): 425-429.
游进军, 王浩, 甘泓.水资源系统模拟模型研究进展[J]. 水科学进展, 2006, 17(3): 425-429.
13 SHI Chunli, JIN Taotao, REN Haijing, et al. Review and studies about typical models of water resource management[J]. Journal of Anhui Agricultural Sciences, 2015, 43(10): 249-250, 304.
石春力, 金陶陶, 任海静, 等. 水资源管理典型模型技术研究综述[J]. 安徽农业科学, 2015, 43(10): 249-250, 304.
14 GE Yingchun, LI Xin. Water resources management decision support system: review and prospect [J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1 248-1 256.
盖迎春, 李新. 水资源管理决策支持系统研究进展与展望 [J]. 冰川冻土, 2012, 34(5): 1 248-1 256.
15 LIU Jianguo, DIETZ T, CARPENTER S R, et al. Complexity of Coupled Human and Natural Systems [J]. Science, 2007, 317(5 844): 1 513-1 516.
16 WANG Hao, WANG Jianhua, QIN Dayong, et al. Theory and methodology of water resources assessment based on dualistic water cycle model[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1 496-1 502.
王浩, 王建华, 秦大庸, 等. 基于二元水循环模式的水资源评价理论方法[J]. 水利学报, 2006, 37(12): 1 496-1 502.
17 YANG Y-C E, CAI Xingming, STIPANOVI? D M. A decentralized optimization algorithm for multiagent system-based watershed management [J]. Water Resources Research, 2009, 45(8): W08430.
18 AN Li. Modeling human decisions in coupled human and natural systems: review of agent-based models [J]. Ecological Modelling, 2012, 229: 25-36.
19 SCHELLING T C. Dynamic models of segregation [J]. The Journal of Mathematical Sociology, 1971, 1(2): 143-186.
20 GRIMM V, REVILLA E, BERGER U, et al. Pattern-oriented modeling of agent-based complex systems: lessons from ecology [J]. Science, 2005, 310(5 750): 987-991.
21 PARKER D C, MANSON S M, JANSSEN M A, et al. Multi-agent systems for the simulation of land-use and land-cover change: a review [J]. Annals of the Association of American Geographers, 2003, 93(2): 314-337.
22 CHU Junying, CHEN Jining, ZOU Ji, et al. Agent- based social simulation for policy research in water resources management and water pollution control [J]. China Population, Resources and Environment, 2004, 14(6): 29-34.
褚俊英, 陈吉宁, 邹骥, 等. 基于复杂系统建模的水管理政策研究进展 [J]. 中国人口·资源与环境, 2004, 14(6): 29-34.
23 LIAN Jijian, XU Ziyao, Lingling BIN, et al. Progress of agent-based modeling for water resources management: a review [J]. Advances in Water Science, 2019, 30(2): 282-293.
练继建, 徐梓曜, 宾零陵, 等. 基于Agent的水资源管理模型研究进展 [J]. 水科学进展, 2019, 30(2): 282-293.
24 YAN Meng, DU Erhu, WANG Zongzhi, et al. Modeling for the water resource complexity system coupling behavioral economics and natural process [J]. Journal of Water Resources and Water Engineering, 2018, 29(6): 53-60.
闫猛, 杜二虎, 王宗志, 等. 行为经济与自然过程耦合视角下的水资源复杂系统建模研究 [J]. 水资源与水工程学报, 2018, 29(6): 53-60.
25 HOLLAND J H. Hidden order: how adaptation builds complexity [M]. Boston: Addison Wesley Longman Publishing Co., Inc., 1996.
26 EPSTEIN J M, AXTELL R. Growing artificial societies: social science from the bottom up [M]. Washington DC: Brookings Institution Press, 1996.
27 EPSTEIN J M, AXTELL R. Artificial societies and generative social science [J]. Artificial Life and Robotics, 1997, 1(1): 33-34.
28 GUO Dan, REN Bo, WANG Cheng. Integrated agent-based modeling with GIS for large scale emergency simulation [C]//International symposium on intelligence computation and applications. Berlin: Springer, 2008: 618-625.
29 WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
30 GILBERT N, BANKES S. Platforms and methods for agent-based modeling [J]. Proceedings of the National Academy of Sciences, 2002, 99(): 7 197-7 198.
31 ABAR S, THEODOROPOULOS G K, LEMARINIER P, et al. Agent based modelling and simulation tools: a review of the state-of-art software [J]. Computer Science Review, 2017, 24: 13-33.
32 GRIMM V, BERGER U, BASTIANSEN F, et al. A standard protocol for describing individual-based and agent-based models [J]. Ecological Modelling, 2006, 198(1/2): 115-126.
33 GRIMM V, BERGER U, DEANGELIS D L, et al. The ODD protocol: a review and first update [J]. Ecological Modelling, 2010, 221(23): 2 760-2 768.
34 DAI Erfu, MA Liang, YANG Weishi, et al. Agent based model of land system: theory, application and modelling framework [J]. Acta Geographica Sinica, 2019, 74(11): 2 260- 2 272.
戴尔阜, 马良, 杨微石, 等. 土地系统多主体模型的理论与应用 [J]. 地理学报, 2019, 74(11): 2 260-2 272.
35 TAO Tao, LIU Suiqing, LI Shuping. Advances in management model of urban water resources [J]. Journal of Water Resources and Water Engineering, 2005, 16(1): 60-62,66.
陶涛, 刘遂庆, 李树平. 城市水资源管理模型的研究进展 [J]. 水资源与水工程学报, 2005, 16(1): 60-62,66.
36 ATHANASIADIS I N, MENTES A K, MITKAS P A, et al. A hybrid agent-based model for estimating residential water demand [J]. Simulation, 2005, 81(3): 175-187.
37 GALáN J M, LóPEZ‐PAREDES A, OLMO R DEL. An agent‐based model for domestic water management in Valladolid metropolitan area [J]. Water Resources Research, 2009, 45(5): W05401.
38 ZELLNER M L. Generating policies for sustainable water use in complex scenarios: an integrated land-use and water-use model of Monroe County, Michigan [J]. Environment and Planning B: Planning and Design, 2007, 34(4): 664-686.
39 ZELLNER M L. Embracing complexity and uncertainty: the potential of agent-based modeling for environmental planning and policy [J]. Planning Theory & Practice, 2008, 9(4): 437-457.
40 ZELLNER M L, THEIS T L, KARUNANITHI A T, et al. A new framework for urban sustainability assessments: linking complexity, information and policy [J]. Computers, Environment and Urban Systems, 2008, 32(6): 474-488.
41 KANTA L, ZECHMAN E. Complex adaptive systems framework to assess supply-side and demand-side management for urban water resources [J]. Journal of Water Resources Planning and Management, 2014, 140(1): 75-85.
42 KOUTIVA I, MAKROPOULOS C. Modelling domestic water demand: an agent based approach [J]. Environmental Modelling & Software, 2016, 79: 35-54.
43 CHU Junying, WANG Can, CHEN Jining, et al. Agent-based residential water use behavior simulation and policy implications: a case-study in Beijing City [J]. Water Resources Management, 2009, 23(15): 3 267-3 295.
44 JIN Juliang, CUI Yi, ZHANG Libing, et al. Simulation and prediction analysis of urban household water demand based on multi-agent [J]. Journal of Hydraulic Engineering, 2015, 46(12): 1 387-1 397.
金菊良, 崔毅, 张礼兵, 等. 基于多智能体的城镇家庭用水量模拟预测分析 [J]. 水利学报, 2015, 46(12): 1 387-1 397.
45 YUAN Xiaochen, WEI Yiming, PAN Suyan, et al. Urban household water demand in Beijing by 2020: an agent-based model [J]. Water Resources Management, 2014, 28(10): 2 967-2 980.
46 SCHWARZ N, ERNST A. Agent-based modeling of the diffusion of environmental innovations—an empirical approach [J]. Technological Forecasting and Social Change, 2009, 76(4): 497-511.
47 KOTZ C, HIESSL H. Analysis of system innovation in urban water infrastructure systems: an agent-based modelling approach [J]. Water Science and Technology: Water Supply, 2005, 5(2): 135-144.
48 KANDIAH V, BINDER A R, BERGLUND E Z. An empirical agent‐based model to simulate the adoption of water reuse using the social amplification of risk framework [J]. Risk Analysis, 2017, 37(10): 2 005-2 022.
49 KANDIAH V K, BERGLUND E Z, BINDER A R. An agent-based modeling approach to project adoption of water reuse and evaluate expansion plans within a sociotechnical water infrastructure system [J]. Sustainable Cities and Society, 2019, 46: 101412.
50 SAUER T, HAVLíK P, SCHNEIDER U A, et al. Agriculture and resource availability in a changing world: the role of irrigation [J]. Water Resources Research, 2010, 46(6): W06503.
51 EISENSTEIN M. Natural solutions for agricultural productivity [J]. Nature, 2020, 588(7 837): S58-S59.
52 LANSING J S, KREMER J N. Emergent properties of Balinese water temple networks: coadaptation on a rugged fitness landscape [J]. American Anthropologist, 1993, 95(1): 97-114.
53 VAN OEL P R, KROL M S, HOEKSTRA A Y, et al. Feedback mechanisms between water availability and water use in a semi-arid river basin: a spatially explicit multi-agent simulation approach [J]. Environmental Modelling & Software, 2010, 25(4): 433-443.
54 MULLIGAN K B, BROWN C, YANG Y C E, et al. Assessing groundwater policy with coupled economic‐groundwater hydrologic modeling [J]. Water Resources Research, 2014, 50(3): 2 257-2 275.
55 DU Erhu, TIAN Yong, CAI Ximing, et al. Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture: a tightly coupled, fully integrated modeling approach [J]. Journal of Hydrology, 2020, 591: 125313.
56 ZHAO Jianshi, CAI Ximing, WANG Zhongjing. Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework [J]. Journal of Environmental Management, 2013, 123: 120-130.
57 LEI Xiaowen, ZHAO Jianshi, YANG Y-C E, et al. Comparing the economic and environmental effects of different water management schemes using a coupled agent-hydrologic model [J]. Journal of Water Resources Planning and Management, 2019, 145(6): 05019010.
58 DU Erhu, CAI Ximing, BROZOVI? N, et al. Evaluating the impacts of farmers' behaviors on a hypothetical agricultural water market based on double auction [J]. Water Resources Research, 2017, 53(5): 4 053-4 072.
59 AGHAIE V, ALIZADEH H, AFSHAR A. Agent-based hydro-economic modelling for analysis of groundwater-based irrigation water market mechanisms [J]. Agricultural Water Management, 2020, 234: 106140.
60 AGHAIE V, ALIZADEH H, AFSHAR A. Emergence of social norms in the cap-and-trade policy: an agent-based groundwater market [J]. Journal of Hydrology, 2020, 588: 125057.
61 NG T L, EHEART J W, CAI Ximing, et al. An agent‐based model of farmer decision‐making and water quality impacts at the watershed scale under markets for carbon allowances and a second‐generation biofuel crop [J]. Water Resources Research, 2011, 47(9): W09519.
62 HU Yao, BEATTIE S. Role of heterogeneous behavioral factors in an agent-based model of crop choice and groundwater irrigation [J]. Journal of Water Resources Planning and Management, 2019, 145(2): 04018100.
63 YUAN Shiwei, LI Xin, DU Erhu. Effects of farmers' behavioral characteristics on crop choices and responses to water management policies [J]. Agricultural Water Management, 2021, 247: 106693.
64 CHENG Guodong, LI Xin, ZHAO Wenzhi, et al. Integrated study of the water-ecosystem-economy in the Heihe River Basin [J]. National Science Review, 2014, 1(3): 413-428.
65 CHENG Guodong, LI Xin. Integrated research methods in watershed science [J]. Science China (Earth Sciences), 2015, 58(7): 1 159-1 168.
程国栋, 李新. 流域科学及其集成研究方法 [J]. 中国科学:地球科学, 2015, 45(6): 811-819.
66 HE Chansheng. Watershed science and water resources management [J]. Advances in Earth Science, 2012, 27(7): 705-711.
贺缠生.流域科学与水资源管理[J].地球科学进展,2012,27(7):705-711.
67 BECU N, PEREZ P, WALKER A, et al. Agent based simulation of a small catchment water management in northern Thailand: description of the CATCHSCAPE model [J]. Ecological Modelling, 2003, 170(2/3): 319-331.
68 YANG Y-C E, ZHAO Jianshi, CAI Ximing. Decentralized optimization method for water allocation management in the Yellow River Basin [J]. Journal of Water Resources Planning and Management, 2012, 138(4): 313-325.
69 GIULIANI M, CASTELLETTI A. Assessing the value of cooperation and information exchange in large water resources systems by agent‐based optimization [J]. Water Resources Research, 2013, 49(7): 3 912-3 926.
70 AKHBARI M, GRIGG N S. A framework for an agent-based model to manage water resources conflicts [J]. Water Resources Management, 2013, 27(11): 4 039-4 052.
71 AKHBARI M, GRIGG N S. Managing water resources conflicts: modelling behavior in a decision tool [J]. Water Resources Management, 2015, 29(14): 5 201-5 216.
72 KHAN H F, YANG Y C E, XIE H, et al. A coupled modeling framework for sustainable watershed management in transboundary river basins [J]. Hydrology and Earth System Sciences, 2017, 21(12): 6 275-6 288.
73 HU Yao, QUINN C J, CAI Ximing, et al. Combining human and machine intelligence to derive agents' behavioral rules for groundwater irrigation [J]. Advances in Water Resources, 2017, 109: 29-40.
74 NI Jianjun, LIU Minghua, REN Li, et al. A multiagent Q-learning—based optimal allocation approach for urban water resource management system [J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(1): 204-214.
75 RIEKER J D, LABADIE J W. An intelligent agent for optimal river-reservoir system management [J]. Water Resources Research, 2012, 48(9): W09550.
76 FAGIOLO G, BIRCHENHALL C, WINDRUM P. Empirical validation in agent-based models: introduction to the special issue [J]. Computational Economics, 2007, 30(3): 189-194.
77 FAGIOLO G, MONETA A, WINDRUM P. A critical guide to empirical validation of agent-based models in economics: methodologies, procedures, and open problems [J]. Computational Economics, 2007, 30(3): 195-226.
78 BERT F E, ROVERE S L, MACAL C M, et al. Lessons from a comprehensive validation of an agent based-model: the experience of the Pampas Model of Argentinean agricultural systems [J]. Ecological Modelling, 2014, 273: 284-298.
79 ZHUO Lu, HAN Dawei. Agent-based modelling and flood risk management: a compendious literature review [J]. Journal of Hydrology, 2020, 591: 125600.
80 POLHILL J G, L-A SUTHERLAND, GOTTS N M. Using qualitative evidence to enhance an agent-based modelling system for studying land use change [J]. Journal of Artificial Societies and Social Simulation, 2010, 13(2): 1-10.
81 LOUIE M A, CARLEY K M. Balancing the criticisms: validating multi-agent models of social systems [J]. Simulation Modelling Practice and Theory, 2008, 16(2): 242-256.
82 VOINOV A, BOUSQUET F. Modelling with stakeholders [J]. Environmental Modelling & Software, 2010, 25(11): 1 268-1 281.
83 LI Xin, CHENG Guodong, WU Lizong. Digital Heihe River Basin. 1: an information infrastructure for the watershed science [J]. Advances in Earth Science, 2010, 25(3): 297-305.
李新, 程国栋, 吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域 [J]. 地球科学进展, 2010, 25(3): 297-305.
84 LI Xin, LI Xiaowen, LI Zengyuan, et al. Progresses on the Watershed Allied Telemetry Experimental Research (WATER) [J]. Remote Sensing Technology and Application, 2012, 27(5): 637-649.
李新, 李小文, 李增元, 等. 黑河综合遥感联合试验研究进展:概述 [J]. 遥感技术与应用, 2012, 27(5): 637-649.
85 LI Xin, LIU Shaomin, MA Mingguo, et al. HiWATER: an integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin [J]. Advances in Earth Science, 2012, 27(5): 481-498.
李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计 [J]. 地球科学进展, 2012, 27(5): 481-498.
86 LI Xin, ZHANG Ling, ZHENG Yi, et al. Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: a watershed system model for the Heihe River Basin[J]. Environmental Modeling & Software, 2012, 10(10): 141105058.
[1] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[2] 熊永兰, 张志强, 刘志辉, 程国栋. 基于科学知识图谱的水文化变迁研究方法探析[J]. 地球科学进展, 2014, 29(1): 92-103.
[3] 任庆福, 杨志勇, 李传哲, 张天雪. 变化环境下作物蒸散研究进展[J]. 地球科学进展, 2013, 28(11): 1227-1238.
[4] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[5] 程国栋.赵传燕. 西北干旱区生态需水研究[J]. 地球科学进展, 2006, 21(11): 1101-1108.
[6] 刘昌明. “黄河流域水资源演化规律与可再生性维持机理”研究进展[J]. 地球科学进展, 2006, 21(10): 991-998.
[7] 周国逸,黄志宏. 中国大陆面向生态的水资源管理与调控战略[J]. 地球科学进展, 2002, 17(3): 435-440.
阅读次数
全文


摘要