地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 978 -989. doi: 10.11867/j.issn.1001-8166.2020.071

研究简报 上一篇    

中国植被覆盖变化研究遥感数据源及研究区域时空热度分析
吴佳梅( ),彭秋志( ),黄义忠,黄亮   
  1. 昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2020-05-27 修回日期:2020-08-03 出版日期:2020-09-10
  • 通讯作者: 彭秋志 E-mail:2793394819@qq.com;pengqiuzhi@kust.edu.cn
  • 基金资助:
    国家自然科学基金项目“南方山地城镇建设用地分布与变化的坡度梯度效应研究”(41961039);云南省应用基础研究计划面上项目“基于全卷积神经网络的多源遥感影像变化检测”(2018FB078)

Spatio-temporal Pattern of Remote Sensing Data Sources and Study Areas in Papers on Vegetation Cover Changes in China

Jiamei Wu( ),Qiuzhi Peng( ),Yizhong Huang,Liang Huang   

  1. Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China
  • Received:2020-05-27 Revised:2020-08-03 Online:2020-09-10 Published:2020-10-28
  • Contact: Qiuzhi Peng E-mail:2793394819@qq.com;pengqiuzhi@kust.edu.cn
  • About author:Wu Jiamei (1994-), female, Kunming City, Yunnan Province, Master student. Research areas include 3S technology and application in land use management. E-mail: 2793394819@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(41961039);The Applied Basic Research Programs of Science and Technology Department of Yunnan Province “Change detection of multi-source remote sensing images based on full convolution neural network”(2018FB078)

基于遥感数据源的植被覆盖变化研究是地表过程研究的重要组成与常见主题。利用文献计量结果GIS空间展现与分析方法,从1?021篇研究中国植被覆盖变化的中文文献中提取遥感数据源和研究区域等信息,分析了遥感数据源的构成及其时间热度变化、遥感数据源与研究区域的时空尺度对应关系,以及研究区域空间热度的分布与迁移特征。结果显示: 文献数量总体呈逐渐增多趋势,4种遥感数据源被使用的较热时段与其可用时段基本吻合; 平均研究时段长度逐渐加长,遥感数据源空间分辨率与研究区域面积呈正向关联且基本维持稳定; 热点研究区域主要集中于以黄土高原为核心的北方干旱半干旱地区。研究成果能为宏观把握中国植被覆盖变化研究遥感数据源及研究区域时空热度变化趋势提供基础参考。

The study on vegetation cover changes based on remote sensing data sources is an important component and frequent topic of earth surface process research. In order to review and summarize the remote sensing data sources and the spatio-temporal pattern of the study areas for vegetation cover changes in China from the perspective of bibliometrics and GIS spatial presentation, the information of remote sensing data sources and study areas were extracted from 1 021 papers on vegetation. Then the composition of remote sensing data sources and their temporal changes in heat which is termed as study frequency, the spatio-temporal scale characteristics of remote sensing data sources and study areas, and the distributions and change characteristics of hot study regions were analyzed. The results show that the number of papers is increasing gradually, and the frequency of each remote sensing data source is basically consistent with its available timing; the average period length of the remote sensing data used is gradually elongated, and the spatial resolution of remote sensing data is positively correlated with the size of study areas stably; the hot study regions are concentrated in the Loess Plateau area, and the core of the northern arid and semi-arid areas. These results can provide a basic reference for understanding the spatio-temporal pattern and the change trend on the utilization of remote sensing data sources and hot regions for vegetation change studies.

中图分类号: 

表1 文中所用遥感数据源含义
Table 1 Explanation of remote sensing data sources used in this paper
图1 遥感数据源对应文献数量历年变化
Fig.1 Annual changes in the number of papers and the proportion of remote sensing data sources
图2 遥感数据源被使用频次历年变化
Fig.2 Annual changes of the using frequency of remote sensing data sources
图3 平均研究时段长度历年变化
Fig.3 Annual changes of the average study temporal span
图4 研究区域平均面积历年变化
Fig.4 Annual changes of the average study area size
图5 遥感数据源在不同研究区域尺度下的文献数量
Fig.5 Number of papers with use of remote sensing data sources in different study areas scales
图6 研究区域空间热度整体分布
Fig.6 Overall distributions of spatial hot spots in the study areas
图7 遥感数据源研究区域空间热度分布
Fig.7 Distributions of spatial hot spots in the study area with different remote sensing data sources
图8 研究区域空间热度重心迁移轨迹
Fig.8 Gravity center track changes of spatial hot spots in the study areas
1 He Yinjie, Wu Dafang, Liu Yanyan. Review on the impacts of public rail transport on urban landuse change: A citespace-based quantitative analysis [J]. Advances in Earth Science, 2018, 33(12): 1 259-1 271.
何尹杰, 吴大放, 刘艳艳. 城市轨道交通对土地利用的影响研究综述——基于Citespace的计量分析[J]. 地球科学进展, 2018, 33(12): 1 259-1 271.
2 Wang Xuemei, Li Xin, Ma Zhicheng, et al. Development of the bibliometric geographic information system based on open source platform [J]. Remote Sensing Technology and Application, 2014, 29(5): 891-896.
王雪梅, 李新, 马志程, 等. 基于开源平台构建文献计量地理信息系统[J]. 遥感技术与应用, 2014, 29(5): 891-896.
3 Wang Xuemei, Li Xin, Ma Mingguo, et al. Spatial analysis on the geographical information of the scientific literatures for Qinghai-Tibet Plateau [J]. Advances in Earth Science, 2012, 27(11): 1 288-1 294.
王雪梅, 李新, 马明国, 等. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 2012, 27(11): 1 288-1 294.
4 Hengl T, Minasny B, Gould M. A geostatistical analysis of geostatistics [J]. Scientometrics, 2009, 80(2): 491-514.
5 Bornmann L, Waltman L. The detection of "hot regions" in the geography of science—A visualization approach by using density maps [J]. Journal of Informetrics, 2011, 5(4): 547-553.
6 Yang Mai, Wang Xuemei. A Bibliometrics analysis of world libraries' papers based on GIS [J]. Remote Sensing Technology and Application, 2015, 30(4): 819-824.
杨麦, 王雪梅. 基于GIS的图书文献计量分析[J]. 遥感技术与应用, 2015, 30(4): 819-824.
7 Zhong Saixiang, Yuan Tian, Su Xiangyan, et al. Progress in Human Geography in a century: A bibliometric review of 73 SSCI journals [J]. Acta Geographica Sinica, 2015, 70(4): 678-688.
钟赛香, 袁甜, 苏香燕, 等. 百年SSCI看国际人文地理学的发展特点与规律——基于73种人文地理类期刊的文献计量分析[J]. 地理学报, 2015, 70(4): 678-688.
8 Tian Yaping, Chang Hao. Bibliometric analysis of research progress on ecological vulnerability in China [J]. Acta Geographica Sinica, 2012, 67(11): 1 515-1 525.
田亚平, 常昊. 中国生态脆弱性研究进展的文献计量分析[J]. 地理学报, 2012, 67(11): 1 515-1 525.
9 Li Na, Lu Jingliang, Ma Jianxia, et al. Exploratory analysis of spatial-temporal distribution characteristics in study area of desert science research field: A case study of published papers in JAE [J]. World Sci-Tech R&D, 2016, 38(2): 231-235.
李娜, 鲁景亮, 马建霞, 等. 沙漠科学研究野外采样区时空分布特征探索性分析——以JAE期刊出版论文为例[J]. 世界科技研究与发展, 2016, 38(2): 231-235.
10 Abudukeyimu·Abulizi, Dilixiati·Maimaiti, Abudushataer·Maimaitiming, et al. Research of the natural vegetation coverage changes and humanities degrees combination in Turpan Basin [J]. Xinjiang Agricultural Sciences, 2007, 44(5): 667-671,729.
阿不都克依木·阿布力孜, 地里夏提·买买提, 阿布都沙塔尔·买买提明, 等. 吐鲁番盆地植被盖度变化的自然及人文耦合分析[J]. 新疆农业科学, 2007, 44(5): 667-671,729.
11 Chen Yunhao, Li Xiaobing, Shi Peijun. Landscape spatial-temporal pattern analys is on change in the fraction of green vegetation based on remotely sensed data: A case study in Haidian District, Beijing [J]. Acta Ecologica Sinica, 2002, 22(10): 1 581-1 586.
陈云浩, 李晓兵, 史培军. 基于遥感的植被覆盖变化景观分析——以北京海淀区为例[J]. 生态学报, 2002, 22(10): 1 581-1 586.
12 Wang Haijun, Jin Xiaohua, Li Hailong, et al. NDVI variation and coupling analysis with climate change in northwest of China based on GIS and RS [J]. Transactions of the CSAE, 2010, 26(11): 194-203.
王海军, 靳晓华, 李海龙, 等. 基于GIS和RS的中国西北NDVI变化特征及其与气候变化的耦合性[J]. 农业工程学报, 2010, 26(11): 194-203.
13 Zhang Baoqing, Wu Pute, Zhao Xining. Detecting and analysis of spatial and temporal variation of vegetation cover in the Loess Plateau during 1982-2009 [J]. Transactions of the CSAE, 2011, 27(4): 287-293.
张宝庆, 吴普特, 赵西宁. 近30a黄土高原植被覆盖时空演变监测与分析[J]. 农业工程学报, 2011, 27(4): 287-293.
14 Fang Jingyun, Shilong Piao, He Jinsheng, et al. The trend of vegetation coverage in China is increasing in recent 20 years [J]. Science in China (Series C), 2003, 33(6): 554-565.
方精云, 朴世龙, 贺金生, 等. 近20年来中国植被活动在增强[J]. 中国科学:C辑, 2003, 33(6): 554-565.
15 Liu Shuang, Gong Peng. Change of surface cover greenness in China between 2000 and 2010 [J]. Chinese Science Bulletin, 2012, 57(16): 1 423-1 434.
刘爽, 宫鹏. 2000—2010年中国地表植被绿度变化[J]. 科学通报, 2012, 57(16): 1 423-1 434.
16 Gong Peng. Towards more extensive and deeper application of remote sensing [J]. Journal of Remote Sensing, 2019, 23(4): 567-569.
宫鹏. 对遥感科学应用的一点看法[J]. 遥感学报, 2019, 23(4): 567-569.
17 Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015 [J]. Acta Geographica Sinica, 2020, 75(5): 961-974.
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
18 Yang Lei, Zhang Mei, Luo Mingliang, et al. Landscape pattern change of vegetation coverage in hilly area of central Sichuan, South-west China based on MODIS NDVI [J]. Chinese Journal of Ecology, 2013, 32(1): 171-177.
杨磊, 张梅, 罗明良, 等. 基于MODIS NDVI的川中丘陵区植被覆盖度景观格局变化[J]. 生态学杂志, 2013, 32(1): 171-177.
19 Zhang Pingjiu, Pan Genxing. Characteristics of soli nutrients and biochemical properties under different vegetation communities in Karst area [J]. Journal of Soil and Water Conservation, 2012, 26(1): 77-80,84.
张平究, 潘根兴. 不同植被群落下喀斯特土壤养分及生物化学性质特征[J]. 水土保持学报, 2012, 26(1): 77-80,84.
20 Gong Lu, Li Junsheng, Liu Xiaoyan, et al. Analysis of invasive alien species in Chinese national nature reserves [J]. Ecological Science, 2017, 36(4): 210-216.
宫璐, 李俊生, 柳晓燕, 等. 我国部分国家级自然保护区外来入侵物种的分布概况[J]. 生态科学, 2017, 36(4): 210-216.
21 Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management [J]. Nature Sustainability, 2019, 2(2): 122-129.
22 Peng Qiuzhi, Qin Guoling, Leting Lü, et al. Spatio-temporal patterns of cloud interference in Dongjiang River basin from MODIS data [J]. Remote Sensing for Land and Resources, 2018, 30(1): 109-115.
彭秋志, 秦国玲, 吕乐婷, 等. 基于MODIS数据的东江流域云干扰时空特征分析[J]. 国土资源遥感, 2018, 30(1): 109-115.
23 Li Shuangcheng, Gao Weiming, Zhou Qiaofu, et al. Multi-scale spatial analysis on NDVI and topographical factors using wavelet transform [J]. Acta Ecologica Sinica, 2006, 26(12): 4 198-4 203.
李双成, 高伟明, 周巧富, 等. 基于小波变换的NDVI与地形因子多尺度空间相关分析[J]. 生态学报, 2006, 26(12): 4 198-4 203.
24 Xu Jia, Fan Haidong, Ni Jian. Meta- analysis of plant phenological change in China during 1950 and 2015 [J]. Journal of Subtropical Resources and Environment, 2019, 14(2): 1-11.
徐佳, 樊海东, 倪健. 1950—2015年中国植物物候变化的集成分析[J]. 亚热带资源与环境学报, 2019, 14(2): 1-11.
25 He Yunling, Xiong Qiaoli, Yu Lan, et al. Adaptability of vegetation ecosystem to climate change based on the NDVI in Yunnan Province, China [J]. Ecological Science, 2019, 38(6): 165-172.
何云玲, 熊巧利, 余岚, 等. 基于NDVI云南地区植被生态系统对气候变化的适应性分析[J]. 生态科学, 2019, 38(6): 165-172.
26 Zhang Kun, Yihe Lü, Fu Bojie, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau [J]. Acta Geographica Sinica, 2020, 75(5): 949-960.
张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960.
27 Liu Hai, Huang Yuefei, Zheng Liang. Effects of climate and human activities on vegetation cover changes in Danjiangkou water source areas [J]. Transactions of the CSAE, 2020, 36(6): 97-105.
刘海, 黄跃飞, 郑粮. 气候与人类活动对丹江口水源区植被覆盖变化的影响[J]. 农业工程学报, 2020, 36(6): 97-105.
28 Liu Lin, Yao Bo. Monitoring vegetation-cover changes based on NDVI dimidiate pixel model [J]. Transactions of the CSAE, 2010, 26(Supp.1): 230-234.
刘琳, 姚波. 基于NDVI象元二分法的植被覆盖变化监测[J]. 农业工程学报, 2010, 26(): 230-234.
29 Jia Kun, Yao Yunjun, Wei Xiangqin, et al. A review on fractional vegetation cover estimation using remote sensing [J]. Advances in Earth Science, 2013, 28(7): 774-782.
贾坤, 姚云军, 魏香琴, 等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7): 774-782.
30 Liang Zhilin, Zhang Liyan, Zeng Xianling, et al. Research on identification method of urban vegetation based on hyperspectral imagery[J]. Geospatial Information, 2017, 15(2): 72-75,10.
梁志林, 张立燕, 曾现灵, 等. 高光谱遥感城市植被识别方法研究[J]. 地理空间信息, 2017, 15(2): 72-75,10.
[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[3] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[4] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[5] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[6] 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J]. 地球科学进展, 2020, 35(12): 1270-1280.
[7] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[10] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[11] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[12] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[13] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[14] 高春东,吴秀平. 基于文献计量的水治理研究国际发展态势分析[J]. 地球科学进展, 2019, 34(3): 324-332.
[15] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
阅读次数
全文


摘要