地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 697 -705. doi: 10.11867/j.issn.1001-8166.2019.07.0697

综述与评述 上一篇    下一篇

中国东南地区中世纪暖期和小冰期夏季风降水研究进展
蒋诗威 1( ),周鑫 1, 2( )   
  1. 1. 中国科学技术大学地球和空间科学学院,安徽 合肥 230026
    2. 中国科学院比较行星学卓越创新中心,安徽 合肥 230026
  • 收稿日期:2019-03-15 修回日期:2019-05-20 出版日期:2019-07-10
  • 通讯作者: 周鑫 E-mail:jiangsw@mail.ustc.edu.cn;xinzhou@ustc.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“全新世环境演化”(41822707);国家自然科学基金面上项目“淮河流域湖泊沉积记录的全新世晚期季风降水演化”(41672159)

On Monsoon Precipitation Changes During the Medieval Warm Period and the Little Ice Age in Southeastern China

Shiwei Jiang 1( ),Xin Zhou 1, 2( )   

  1. 1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
    2. Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China
  • Received:2019-03-15 Revised:2019-05-20 Online:2019-07-10 Published:2019-07-29
  • Contact: Xin Zhou E-mail:jiangsw@mail.ustc.edu.cn;xinzhou@ustc.edu.cn
  • About author:Jiang Shiwei (1993-), male, Shangrao City, Jiangxi Province, Ph.D student. Research areas include Holocene environmental change and human activity. E-mail: jiangsw@mail.ustc.edu.cn
  • Supported by:
    ect supported by the National Natural Science Foundation of China “Holocene environmental change” (No.41822707) and “Late Holocene monsoon precipitation changes during the late Holocene reconstructed from lake sediments in the Huai River Basin”(41672159)

中国东部季风区过去千年季风降水演变研究已取得大量研究成果及重要阶段性进展,然而,该区域南方记录指示的降水变化趋势有所差别,主要表现为对中世纪暖期和小冰期相对干湿的认识不一致。筛选整理了17个已发表的中国东部南方地区过去千年的地质和史料记录,将这些结果按照研究材料划分为湖泊沉积、泥炭沉积、近海沉积和史料集成4组分别进行对比分析。结果表明,多种研究材料重建的中国东南地区中世纪暖期和小冰期季风降水相对变化趋势表现不一致。导致差异的原因主要是年代框架的不确定性和代用指标指示意义的不明确,也可能是东南地区降水演变本身存在区域差异。因此,为进一步探讨中国东南地区过去千年的季风降水演变历史及驱动机制,应在相关区域重建更多年代精准和指标可靠的季风降水序列。

Periodic progresses have been made on monsoon precipitation changes during the past millennium in eastern China. However, trends of precipitation records reconstructed in the southern part of the region are inconsistent, especially for the relative humidity and dryness between the Medieval Warm Period and the Little Ice Age. In the present study, 17 published monsoon precipitation records, reconstructed from lake sediments, peat sediments, coastal muddy sediments and historical documents, for the past millennium from southeastern China were collected and compared. The results show that trends of various records are inconsistent. The inconsistencies could be partly attributed to age uncertainties and interpretation of the proxies; and the regional differences in precipitation changes might be another causation. To further explore the spatiotemporal patterns and driving mechanisms of monsoon precipitation during the past millennium in southeastern China, more records with accurate chronology and reliable proxies should be reconstructed.

中图分类号: 

图1 研究区域与数据位置示意图
Fig. 1 Study region and site locations
表1 中国东南地区过去千年 17条降水 /干湿记录
Table 1 Seventeen records of EASM precipitation during the past millennia in southeastern China
序号 位点 纬度/°N 经度/°E 年代跨度/cal BP 研究材料 分辨率*/a 测年方法 测年数据 测年材料 主要代用指标
1 佛爷池[ 15 ] 33.95 107.73 1000—0 湖泊沉积 40 14C 2 全岩 孢粉
2 翠峰湖-1[ 16 ] 24.51 121.61 3770—0 湖泊沉积 45 14C 2/6 植物残体 粒度,总有机碳,C/N,δ15N,δ13C
3 翠峰湖-2[ 17 ] 24.50 121.60 1460—0 湖泊沉积 10 210Pb,14C 4/5 植物残体 硅藻,磁化率,δ15N,δ13C
4 湖光岩玛珥湖[ 18 ] 21.15 110.28 1360—0 湖泊沉积 5 137Cs, 14C 3 腐殖黑泥 生物硅,总氮,总有机碳
5 双池玛珥湖[ 19 ] 19.94 110.19 1148—0 湖泊沉积 14 14C 4/6 全岩 Rb/Sr,Rb/K,Zr/Rb,Si/Ti,粒度
6 鄱阳湖[ 20 ] 29.15 116.42 1600—0 湖泊沉积 2.5 14C 3/6 全岩 木头 δ13C
7 高邮湖[ 21 ] 32.84 119.38 1100—0 湖泊沉积 13.5 14C 3/4 全岩 粒度,磁化率,总有机碳,C/N
8 大九湖泥炭[ 22 ] 31.48 110.06 2500—0 泥炭 70 14C 2/12 泥炭全岩 孢粉
9 千亩田泥炭[ 23 ] 30.50 119.44 4100—0 泥炭 20 14C 3/7 泥炭全岩 Rb/Sr,Rb,Sr
10 玉华山泥炭[ 24 ] 27.84 115.65 2000—0 泥炭 4 14C 4/13 植物残体 木屑 孢粉,粒度,腐殖化度,烧失量,Rb/Sr,Zr/Rb
11 望东垟泥炭[ 25 ] 27.68 119.64 7600—0 泥炭 40 14C 2/4 泥炭全岩 磁化率,粒度, 腐殖化度
12 仙山泥炭[ 26 ] 26.87 118.71 1400—0 泥炭 8 14C 3/7 植物残体 木头 α-纤维素δ13C,有机质
13 珠江入海口[ 27 ] 22.35 113.78 2000—0 近海沉积 5.5 14C 4/6 碳/植物纤维 粒度,总有机碳,δ13C
14 冲绳海槽南部[ 28 ] 24.80 122.49 1050—0 近海沉积 15 14C 5/6 浮游有孔虫 硅藻
15 台湾东部黑潮区[ 29 ] 24.10 122.34 850—0 近海沉积 23 14C 6 有孔虫 总氮,总有机碳,粒度,C/N,δ13C
16 江淮地区[ 31 ] 32.36 117.84 2000—50 历史文献 10 历史年代 - - 史料记载
17 华南地区[ 30 ] 27.50 117.00 1500—0 历史文献 1 历史年代 - - 史料记载
图2 湖泊沉积重建的过去千年降水演变记录对比
Fig. 2 Comparison of EASM precipitation records during the past millennia reconstructed from lake sediments
图3 泥炭重建的过去千年降水演变记录对比
Fig. 3 Comparison of EASM precipitation records during the past millennia reconstructed from peat sediments
图4 近海沉积与史料重建的过去千年降水演变记录对比
Fig. 4 Comparison of EASM precipitation records during the past millennia reconstructed from muddy sediments and historical documents
图5 中国东南地区中世纪暖期和小冰期干湿图
Fig. 5 Wetness map based on multi-proxy records during the MCA and LIA in Southeastern China area
1 AnZ, PorterS C, KutzbachJ E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8): 743-762.
2 ZhouT, GongD, LiJ, et al. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon-Recent progress and state of affairs[J]. Meteorologische Zeitschrift, 2009, 18(4): 455-467.
3 DingY, WangZ, SunY. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology, 2008, 28(9): 1 139-1 161.
4 YeXiaoyan, ChenChongcheng, LuoMing. Interdecadal relationship between the East Asian Summer precipitation and global sea surface temperature anomalies[J]. Advances in Earth Science, 2016, 31(9): 984-994.
叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
5 PAGES. Science Plan and Implementation Strategy (IGBP Report No.57)[M]. Stockholm: IGBP Secretariat, 2009.
6 AhmedM, AnchukaitisK J, AsratA, et al. Continental-scale temperature variability during the past two millennia[J]. Nature Geoscience, 2013, 6(5): 339.
7 JonesP D, MannM E. Climate over past millennia[J]. Reviews of Geophysics, 2004, 42(2): 1-42.
8 JonesP D, BriffaK R, OsbornT J, et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects[J]. The Holocene, 2009, 19(1): 3-49.
9 MannM E, ZhangZ, RutherfordS, et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly[J]. Science, 2009, 326(5 957): 1 256-1 260.
10 GebbieG, HuybersP. The little ice age and 20th-century deep Pacific cooling[J]. Science, 2019, 363(6 422): 70-74.
11 TrouetV, EsperJ, GrahamN E, et al. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly[J]. Science, 2009, 324(5 923): 78-80.
12 LiT, ShenC, LiH, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4 140-4 156.
13 WangY, ChengH, EdwardsR L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5 723): 854-857.
14 CaiY, TanL, ChengH, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1/4): 21-31.
15 TongGuobang, ZhaoJingbo. Environment changes at the top of Taibai Mountain, Qinling science 1ka ago[J]. Marine Geology & Quaternary Geology, 1996, 16(4): 95-104.
童国榜, 赵景波. 秦岭太白山顶近千年来的环境变化[J]. 海洋地质与第四纪地质, 1996, 16(4): 95-104.
16 SelvarajK, WeiK Y, LiuK K, et al. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments[J]. Quaternary Science Reviews, 2012, 37: 48-60.
17 WangL C, BehlingH, LeeT Q, et al. Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake[J]. Journal of Paleolimnology, 2013, 49(4): 619-631.
18 ChuG, LiuJ, SunQ, et al. The ‘mediaeval warm period’ drought recorded in Lake Huguangyan, tropical South China[J]. The Holocene, 2002, 12(5): 511-516.
19 ZhangW, YanH, LiuC, et al. Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age[J]. Quaternary International, 2018, 487: 54-60.
20 LiX, YangH, YaoY, et al. Precipitation changes recorded in the sedimentary total organic carbon isotopes from Lake Poyang in the Middle and Lower Yangtze River, southern China over the last 1600 years[J]. Quaternary International, 2016, 425: 292-300.
21 LiS, GuoW, YinY, et al. Environmental changes inferred from lacustrine sediments and historical literature: A record from Gaoyou Lake, eastern China[J]. Quaternary International, 2015, 380: 350-357.
22 HeBaoyin, ZhangSui, CaiShuming. Climatic changes recorded in peat from the Dajiu Lake basin in Shennongjia since the last 2 600 years[J]. Marine Geology and Quaternary Geology, 2003, 23(2): 109-115.
何报寅, 张穗, 蔡述明. 近2600年神农架大九湖泥炭的气候变化记录[J]. 海洋地质与第四纪地质, 2003, 23(2): 109-115.
23 ZhangYu, MaChunmei, ZhaoNing, et al. Late Holocene Rb/Sr ratios as a paleoclimate procy in the Qianmutian Peat of Tianmu Mountains, Zhejiang Province[J]. Journal of Stratigraphy, 2015,39(1): 97-107.
张愈, 马春梅, 赵宁, 等. 浙江天目山千亩田泥炭晚全新世以来 Rb/Sr 记录的干湿变化[J]. 地层学杂志, 2015, 39(1): 97-107.
24 LiLiang, MaChunmei, LuHuayu, et al. A preliminary study of the climate change since 2ka archived by a peat core from Yuhua Mountain in the middle Jiangxi Province[J]. Quaternary Sciences, 2017, 37(3): 548-559.
李亮, 马春梅, 鹿化煜, 等. 江西中部玉华山沼泽泥炭记录的过去两千年气候变化初步研究[J]. 第四纪研究, 2017, 37(3): 548-559.
25 ZhouYunpeng, HuZhongxing, ZhangMan, et al. Magnetic properties of the Wangdongyang Subalpine Peatland in Zhejiang Province, Eastern China and its paleoenvironmental implications[J]. Quaternary Sciences, 2017, 37(6): 1 348-1 356.
周云鹏, 胡忠行, 张曼, 等. 浙江望东垟高山沼泽泥炭磁性特征及其环境意义[J]. 第四纪研究, 2017, 37(6): 1 348-1 356.
26 LeiGuoliang, ZhuYun, JiangXiuyang, et al. Climate variations over the past 1400 years inferred from an α-cellulose δ13C record from Xianshan Peat in Southeast China[J]. Scientia Geographica Sinica, 2014, 34(8): 1 018-1 024.
雷国良, 朱芸, 姜修洋, 等. 福建仙山泥炭距今1400a以来的α-纤维素δ13C记录及其气候意义[J]. 地理科学, 2014, 34(8): 1 018-1 024.
27 NanQ, LiT, ChenJ, et al. Late Holocene (~ 2 ka) East Asian Monsoon variations inferred from river discharge and climate interrelationships in the Pearl River Estuary[J]. Quaternary Research, 2014, 81(2): 240-250.
28 LiD, JiangH, LiT, et al. Late Holocene paleoenvironmental changes in the southern Okinawa Trough inferred from a diatom record[J]. Chinese Science Bulletin, 2011, 56(11): 1 131-1 138.
29 WangYueqi, SongJinming, LiXuegang, et al. Sedimentary records of sea-derived carbon and records of paleoproductivity and climate change in the Kuroshio mainstream over the past millennium[J]. Haiyang Xuebao, 2018, 40(10): 131-142.
王越奇, 宋金明, 李学刚, 等. 台湾东部黑潮区海源碳的沉积物记录与近千年来生产力与气候变化的反演[J]. 海洋学报, 2018, 40(10): 131-142.
30 ZhengJ, WangW C, GeQ, et al. Precipitation variability and extreme events in eastern China during the past 1500 years[J]. Terrestrial, Atmospheric and?Oceanic?Sciences, 2006,17(3): 579-592.
31 ManZhimin. Research on Climate Change During Historical Times in China[M]. Ji'nan:Shandong Education Press,2009.
满志敏. 中国历史时期气候变化研究[M].济南:山东教育出版社, 2009.
32 ChenJ, ChenF, FengS, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
33 TanL, CaiY, ChengH, et al. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2 300 years[J]. Quaternary Science Reviews, 2018, 195: 122-132.
34 ZhangQiang, YaoYubi, WangYing, et al. Risk characteristics and control technology measures of drought disaster in Southern China[J]. Acta Ecologica Sinica, 2017, 37(21): 7 206-7 218.
张强, 姚玉璧, 王莺, 等. 中国南方干旱灾害风险特征及其防控对策[J]. 生态学报, 2017, 37(21): 7 206-7 218.
35 IPCC. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC[M]. Cambridge, United Kingdom: Cambridge University Press, 2007.
36 ChenJ, ChenF, ZhangE, et al. A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance[J]. Chinese Science Bulletin, 2009, 54(20): 3 749-3 759.
37 YuS, ShenJ, ColmanS M. Modeling the radiocarbon reservoir effect in lacustrine systems[J]. Radiocarbon, 2007, 49(3): 1 241-1 254.
38 TuL, ZhouX, ChengW, et al. Holocene East Asian winter monsoon changes reconstructed by sensitive grain size of sediments from Chinese coastal seas: A review[J]. Quaternary International, 2017, 440: 82-90.
39 LiuXiaoyan, ZhanTao, LiuLian, et al. Grain-size of organic debris in sediments from Wudalianchi Crater Lake in Heilongjiang Province record the evolution of summer monsoon precipitation at millennial-to centennial-scale in the early Holocene[J]. Acta Geologica Sinica, 2017, 91(12): 2 854-2 866.
刘孝艳, 詹涛, 刘恋, 等. 黑龙江五大连池火山口湖沉积物有机残体粒度记录的早全新世千百年尺度夏季风降水演化[J]. 地质学报, 2017, 91(12): 2 854-2 866.
40 ZhouX, SunL, ZhanT, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region[J]. Earth and Planetary Science Letters, 2016, 456: 39-46.
41 ChuGuoqiang, LiuJiaqi. Maar lakes in China and their significance in paleoclimatic research[J]. Acta Petrologica Sinica, 2018, 34(1): 4-12.
储国强, 刘嘉麒. 中国玛珥湖及其研究意义[J]. 岩石学报, 2018, 34(1): 4-12.
42 ChenJianhui, RaoZhiguo, LiuJianbao, et al. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record re?ect monsoon rainfall variability[J]. Science in China (Series D), 2016, 59: 2 328-233.
陈建徽, 饶志国, 刘建宝, 等. 全新世东亚夏季风最强盛期出现在何时?——兼论中国南方石笋氧同位素的古气候意义[J]. 中国科学: D辑, 2016, 46(11): 1 494-1 504.
43 ZhangQ, GemmerM, ChenJ. Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium[J]. Quaternary International, 2008, 176: 62-69.
44 PengY, XuY, JinL. Climate changes over eastern China during the last millennium in simulations and reconstructions[J]. Quaternary International, 2009, 208(1/2): 11-18.
45 CuiA, MaC, ZhaoL, et al. Pollen records of the Little Ice Age humidity flip in the middle Yangtze River catchment[J]. Quaternary Science Reviews, 2018, 193: 43-53.
46 YanH, SunL, WangY, et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies[J]. Nature Geoscience, 2011, 4(9): 611-614.
47 ZhangP, ChengH, EdwardsR L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322(5 903): 940-942.
48 TanL, CaiY, AnZ, et al. Climate patterns in north central China during the last 1800 yr and their possible driving force[J]. Climate of the Past, 2011, 7(3): 685-692.
49 ShiZ, LiuX, ChengX. Anti-phased response of northern and southern East Asian summer precipitation to ENSO modulation of orbital forcing[J]. Quaternary Science Reviews, 2012, 40: 30-38.
[1] 周天军,满文敏,张洁. 过去千年气候变化的数值模拟研究进展[J]. 地球科学进展, 2009, 24(5): 469-476.
[2] 刘健,陈星,HansvonStorch,EduardoZorita,王苏民. 中国近500年来的气候模拟与重建资料对比[J]. 地球科学进展, 2006, 21(4): 401-408.
[3] 温孝胜,彭子成,赵焕庭. 中国全新世气候演变研究的进展[J]. 地球科学进展, 1999, 14(3): 292-298.
阅读次数
全文


摘要