地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 401 -408. doi: 10.11867/j.issn.1001-8166.2006.04.0401

学术论文 上一篇    下一篇

中国近500年来的气候模拟与重建资料对比
刘健 1,陈星 2,Hans von Storch 3,Eduardo Zorita 3,王苏民 1   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2.南京大学大气科学系,江苏 南京 210093;3. GKSS 研究中心海岸研究所,D-21502 Geesthacht,德国
  • 收稿日期:2005-09-26 修回日期:2006-01-20 出版日期:2006-04-15
  • 通讯作者: 刘健 E-mail:jianliu@niglas.ac.cn
  • 基金资助:

    国家自然科学基金项目“中国东部地区地表植被演变与气候变化的模拟研究”(编号:40475035);国家重点基础研究发展计划项目“我国大陆季风—干旱环境系统发展过程的研究”(编号:2004CB720200);中国科学院知识创新工程重要方向项目“历史时期环境变化的重大事件复原及其影响研究”(编号:KZCX3-SW-321) ;中国科学院南京地理与湖泊研究所创新项目“中世纪暖期以来气候变化的长积分模拟试验”(编号:CXNIGLAS-2006-1)资助.

Comparison of Simulated and Reconstructed Temperature in China during the Last 500 Years

Liu Jian 1,Chen Xing 2,Hans von Storch 3,Eduardo Zorita 3,Wang Sumin 1   

  1. 1. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;2. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China;3. Institute for Coastal Research, GKSS Research Center, D-21502 Geesthacht, Germany
  • Received:2005-09-26 Revised:2006-01-20 Online:2006-04-15 Published:2006-04-15

介绍了利用全球海气耦合气候模式ECHO-G进行的小冰期以来的长时间积分气候模拟试验,并与中国区域温度重建资料作对比。共做了2个模拟试验:控制试验和真实强迫试验。首先将模拟结果与器测资料作对比,验证该模式模拟中国气候的能力;然后将模拟结果与中国10个区域重建的500年温度序列进行比较分析。均值、方差及EOF分析表明,对于1550年至今的时段,除了东北、新疆、西南地区外,其它地区模拟与重建序列的相关性尚好,相关的置信度超过90%;而对于1760年以来的时期,除了华南、西北、西南地区外,其它地区二者较为一致,相关的置信度均超过90%,表明气候模式ECHO-G能捕捉到中国大部分地区温度的趋势及低频变化特征,也说明上述强迫条件是近500年来气候变化的主要控制因子。然而模拟的温度距平的空间差异性比重建资料的小,对于年代际、年际等短时间尺度的温度变化模拟与重建结果的吻合度较差。误差来自于重建和模拟两个方面。在重建资料方面,需要提高代用资料的代表性、精确性和可靠性;在模拟方面,应提高各强迫条件序列的精确性,同时应引入更多的强迫因子,如下垫面植被及工业气溶胶等。这样从两方面努力,才能更深入地刻划和认识中国历史气候演变及其成因机制问题。

Climatic simulation experiments of long-term integration since the Little Ice Age by the use of the global atmosphere-ocean coupled climate model ECHO-G are introduced in this paper. The simulated temperature series were compared with the reconstructed temperature of China. There were two modeling experiments: control run and forced run. First, modeling result was compared with the observed data for examining the model ability of simulating the climate of China. Then the simulated temperature series were compared with the reconstructed 500-year temperature series in 10 regions of China. The analysis of mean value, variance and EOF showed that for the period from 1550 to the present, there are good correlations between the simulated and reconstructed series except for the regions of the Xinjiang, the Northeastern and the Southwestern China. The correlation confidences are greater than 90% for this period. For the period since 1760, most regions have good correlations with more than 90% confidence levels between simulations and reconstructions except for south, northwest, and southwest of China. This indicates that the climate model ECHO-G can simulate the temperature characteristics of the trends and low frequency changes in most regions of China, and the forcing factors used in the simulations are the main controlling factors for climate change during the last 500 years. However, the spatial differences of simulated temperature anomalies are less than that of reconstructions, and for shorter term variations, such as decadal and interannual changes, the model results are not consistent with the reconstructions very well. The errors may come from both the simulation and the reconstruction. For the reconstruction, the representation, accuracy, and reliability of proxies need to be improved. And for the simulation, more accurate forcing series and more forcing factors, such as land surface vegetation and industrial aerosols need to be drawn into the modeling. If much more work both in simulation and reconstruction are done, the evolution and mechanisms of Chinese historical climate can be deeply understood.

中图分类号: 

[1] Grove J M. The Little Ice Age[M]. London, New York: Methuen, 1988: 1-9.

[2] Mikami T. Proceedings of the International Symposium on the Little Ice Age Climate[C]. Tokyo:Tokyo Metropolitan University, 1992: 1-5.

[3] Fischer H. Little ice age clearly recorded in northern Greenland ice cores[J]. Geophysical Research Letters, 1998, 25(10):1 749-1 752.

[4] Wang Shaowu, Ye Jinglin, Gong Daoyi. Climate in China during the Little Ice Age[J]. Quaternary Research,1998, 18(1): 54-64. [王绍武, 叶瑾琳, 龚道溢. 中国小冰期的气候[J]. 第四纪研究, 1998, 18(1): 54-64.]

[5] Qian W, Zhu Y. Little Ice Age climate near Beijing, China, inferred from historical and stalagmite records[J]. Quaternary Research,2002, 57: 109-119.

[6] Wang Shaowu, Ye Jinglin, Gong Daoyi, et al. Construction of mean annual temperature series for the last one hundred years in China[J]. Journal of Applied Meteorology,1998, 9(4): 392-401. [王绍武, 叶瑾琳, 龚道溢, .近百年中国年气温序列的建立[J]. 应用气象学报, 1998, 9(4): 392-401.]

[7] Ge Quansheng, Zheng Jingyun, Fang Xiuqi, et al. Temperature changes of winter-half-year in eastern China during the past 2000 years[J]. Quaternary Sciences, 2002, 22(2): 166-173. [葛全胜, 郑景云, 方修琦, .过去2000年中国东部冬半年温度变化[J]. 第四纪研究, 2002, 22(2): 166-173.]

[8] Qin Ningsheng, Shao Xuemei, Jin Liya, et al. Climate change during last 500 years indicated by tree ring of cypress in Southern Qinghai Plateau[J]. Chinese Science Bulletin, 2003, 48(19):2 068-2 072.[秦宁生,邵雪梅,靳立亚,.青海南部高原圆柏年轮指示的近500年来气候变化[J]. 科学通报, 2003, 48(19):2 068-2 072.]

[9] Yao Tandong, Qin Dahe, Tian Lide, et al. Temperature and precipitation changes in the last 2ka in Tibetan Plateau- Guliya ice core[J]. Science in China(Series D),1996,26(4): 348-353. [姚檀栋, 秦大河, 田立德, .青藏高原2ka来温度与降水变化——古里雅冰芯记录[J]. 中国科学:D,1996, 26(4): 348-353.]

[10] Shi Y F, Yao T D, Yang B. Decadal climatic variations in Guliya ice core and comparison with the historical documentary data from East China during the last 2000 years[J]. Science in China(Series D),1999,42 (suppl.): 91-100.

[11] Yang B, Braeuning A, Johnson K R, et al. General characteristics of temperature variation in China during the last two millennia[J]. Geophysical Research Letters,2002, 29:1 029-1 040.

[12] Liu Jian, Chen Xing, Yu Ge, et al. Modelling experiments of the effects of climatic main factors on the climate change of Little Ice Age[J]. Lake Sciences,2003,15(4):297-304. [刘健, 陈星, 于革,.小冰期气候变化主控因子的模拟试验[J]. 湖泊科学, 2003, 15(4): 297-304.]

[13] Luterbacher J, Schmutz C, Cyalistras D, et al. Reconstruction of monthly NAO and EU Indices back to 1675[J]. Geophysical Research Letters,1999, 26: 2 745-2 748.

[14] Mann M E, Bradley R S, Hughes M K. Northern Hemisphere temperatures during the past millennium:Inferences, uncertainties, and limitations[J]. Geophysical Research Letters,1999,26(6):759-762.

[15] Jones P D, Briffa K R, Barnett T P, et al. High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures[J]. The Holocene, 1998,8:455-471.

[16] Jones P D, Osborn T J, Briffa K R. The evolution of climate over the last millennium[J]. Science, 2001, 292:662-667.

[17] Crowley T J. Causes of climate change over the last 1000 years[J]. Science,2000, 289: 270-277.

[18] Shindell D T, Schmidt G A, Mann M E, et al. Solar forcing of regional climate change during the maunder minimum [J]. Science,2001, 290:2 149-2 152.

[19] Bertrand C, Loutre M F, Berger A. Climate of the last millenium: A sensitivity study[J]. Tellus, 2002,54:221-244.

[20] Bauer E, Claussen E M, Brovkin V. Assessing climate forcings of the Earth system for the past millennium[J]. Geophysical Research Letters, 2003, 31(12):1 276-1 292.

[21] Cubasch U,Voss R. The influence of total solar irradiance on climate[J]. Space Science Reviews, 2000,94:185-198.

[22] Stott P A, Tett S F B, Allen M R, et al. External control of 20th century temperature variations by natural and anthropogenic forcings[J]. Science,2000,290:2 133-2 137.

[23] Liu Jian, Hans von Storch, Chen Xing, et al. Long-time modeling experiment on global climate change for the last millennium[J]. Advances in Earth Science,2005,20(5):561-567. [刘健,Hans von Storch,陈星,.近千年全球气候变化的长积分模拟试验[J]. 地球科学进展,2005,20(5):561-567.]

[24] Legutke S, Voss R. The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G[R]. Technical Report No.18, German Climate Computer Center(DKRZ), 1999.

[25] Wolff J O, Maier-Reimer E, Legutke S. The Hamburg Primitive Equation Model HOPE[R]. Technical Report No.13, German Climate Computer Center(DKRZ), 1999.

[26] Raible C C, Blender R. Northern Hemisphere midlatitude cyclone variability in GCM simulations with different ocean representations[J]. Climate Dynamics,2004,22(2/3):239-248.

[27] Renssen H, Isarin R F B. Surface temperature in NW Europe during the Younger Dryas: AGCM simulation compared with temperature reconstructions[J]. Climate Dynamics,1997,14(1):33-44.

[28] Blunier T, Chappellaz J A, Schwander J, et al. Variations in atmospheric methan concentration during the Holocene epoch[J]. Nature,1995, 374:46-49.

[29] Etheridge D, Steele L P, Langenfelds R L, et al. Morgan Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firm[J]. Journal of Geophysical Research, 1996, 101:4 115-4 128.

[30] Robock A, Free M. The volcanic record in ice cores for the past 2000 years[C]Jones P, Bradley R, Jouzel J, eds, Climatic Variation and Forcing Mechanisms of the Last 2000 Years. New York: Springer-Verlag, 1996: 533-546.

[31] Briffa K R, Jones P D, Schweingruber F H, et al. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years[J]. Nature, 1998, 377: 450-455.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[9] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[10] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[11] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[12] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[13] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[14] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[15] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
阅读次数
全文


摘要