地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 409 -416. doi: 10.11867/j.issn.1001-8166.2006.04.0409

学术论文 上一篇    下一篇

西南山区河流阶梯—深潭系统的生态学作用
王兆印 1,2,程东升 2,何易平 1,王洪铸 3   
  1. 1.清华大学水沙科学与水利水电工程国家重点实验室, 北京 100084; 2.国际泥沙研究与培训中心, 北京 100044; 3.中国科学院水生生物研究所,湖北 武汉 430072
  • 收稿日期:2005-09-05 修回日期:2006-02-17 出版日期:2006-04-15
  • 通讯作者: 王兆印 E-mail:zywang@tsinghua.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“流域生态与水利工程优化调控”(编号:CB415206);国家自然科学基金和香港研究资助局联合资助项目“河流水沙环境生态综合管理研究——以东江为例”(编号:50318003)资助.

A Study of the Ecological Functions of Step-pool System in Southwest Mountain Streams

Wang ZhaoYin 1,2,Cheng Dongsheng 2,He Yiping 1,Wang  Hongzhu 3   

  1. 1.State key Laboratory of Hydro-Science and Engineering, Tsinghua University, Beijing 100084,China;2. International Research Training Center on Erosion and Sedimentation, Beijing 100044,China;3. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
  • Received:2005-09-05 Revised:2006-02-17 Online:2006-04-15 Published:2006-04-15

山区河流发育的阶梯—深潭系统具有显著的生态学作用。阶梯—深潭系统增大水流阻力和河床抗冲刷力,稳定了河床和岸坡。大卵石堆积成阶梯,细颗粒泥沙在深潭河段的缓流滞流区沉积下来形成淤泥层,形成适宜多种生物的栖息地。选择小江支流——深沟、蒋家沟和小白泥沟,以及四川九寨沟和金沙江进行野外实验、取样分析。结果发现阶梯—深潭系统较发育的深沟和九寨沟底栖动物密度高达552个/m2,生物量高达5.96 g/m2。而邻近的小白泥沟和蒋家沟底栖动物密度仅0.75个/m2,生物量不到0.006 g/m2。考虑河流不同部位底质、水深、流速等特性,提出了生物栖息地多样性及其计算方法,研究发现大型无脊椎动物的生物多样性随栖息地多样性增加而增加。利用阶梯—深潭系统治理山区河流,既能保持河道稳定,又能维持较高的生物多样性,保持健康的河流生态系统。

The development of step-pool system plays an important role in stream ecology. Step-pool system maximizes the flow resistance and protects the bed sediment from erosion. Thus the riverbed and bank slope are stabilized. Boulders, cobbles and gravel tightly interlock and form the steps having an inherent stability which only extreme floods are likely to disturb. Silt and clay deposit in the pools behind the steps. These steps and pools provide high diversity of habitats for stream bio-community. Field investigations are performed to the Xiaojiang River, Jinsha River and Jiuzhai Creek. Step-pool systems develop well in the Jiuzhai Creek and Shengou Ravine, which is a tributary of the Xiaojiang River. The density of benthic macro-invertebrate is 552/m2 in the Jiuzhai Creek and 398/m2 in the Shengou Ravine and the density of bio-mass of benthic macro-invertebrate is 4.75g/m2 in the Jiuzhai Creek and 5.96 g/m2 in the Shengou Ravine. As a comparison, the density of benthic macro-invertebrate is only 0.75/m2 in the Jiangjia Ravine and 0 in the Xiaobaini Ravine, which are also the tributary of the Xiaojiang River, but no step-pool develops in the ravines. The density of bio-mass of benthic macro-invertebrate is only 0.006 g/m2 in the Jiangjia Ravine and 0 g/m2 in the Xiaobaini Ravine. This paper proposes the concept of habitat diversity and a calculation formula considering the spacious distribution of various substrates, velocity and water depth. The study reveals that the biodiversity of benthic macro-invertebrates increases with the habitat diversity in a logarithmic law. Artificial step-pool system can be used for training of mountain streams, which may stabilize the streambed and bank slope, restore healthy river ecology and high biodiversity, and better aesthetic landscape as well.

中图分类号: 

[1] Anne Chin. The morphologic structure of step-pool in mountain streams[J].Geomorphology,1999, 27: 191-204.

[2] Anne Chin. The periodic nature of step-pool mountain streams[J]. American Journal of science,2002,302: 144-167.

[3] Curran Janet H, Wohl Ellen E. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington[J].Geomorphology,2003, 51(1/3):141-157.

[4] William A MacFarlane, Ellen Wohl. The Influence of step compostition on step geometry and flow resistance in step-pool streams of the Washington Cascades[Z]. Water Resources Research, 2002.

[5] Andre Zimmermann, Michael Church. Channel morphology, gradient profiles and bed stresses during flood in a step-pool channel[J].Geomorphology,2001,40:311-327.

[6] Ergenzinger P. River bed adjustment in a step-pool system lainbach,upper Bavaria[C]Thorne C R,Bathurst J C,Hey R D,eds. Sediment Transport in Gravel-bed Rivers. Wiley,Chichester,Dynamics of Gravel-bed Rivers, 1992:415-430.

[7] Whittaker J G, Martin N R Jaeggi. Origin of Step-Pool System in Mountain Streams[R].ASCE, HY6, 1982:758-773.

[8] Whittaker J G. Sediment transport in step-pool streams[C]Thorne C R, Bathurst J C, Hey R D,eds. Sediment Transport in Gravel-bed Rivers. Wiley, Chichester, 1987:545-579.

[9] Ashida K, Egashira S, Kamezaki N. Mechanics of sediment transportation in the production and destruction processes of step-pool morphology[J]. Disaster Prevention Research Institute Annuals,1987,(20B-2):493-506.

[10] Egashira S, Ashida K. Roles of Step-pool Systems in Mountain streams[R]. 6th Congress Asian and Pacific Regional Division.IAMR, 1988:29-36.

[11] Abrahams A D, Li G, Atkinson J F. Step-pool stream: Adjustment to maximum flow resistance[J]. Water Resoure Research,1995, 31(10): 2 593-2 602.

[12] Michael Rosport, Andreas Dittrich. Step Pool Formation and Stability-A Flume Study[R]. The Sixth International Symposium on River Sedimentation, 1995:525-533.

[13] Michael Rosport. Hydraulics of steep mountain streams[J]. International journal of sediment research, 1997, 12(3):99-108.

[14] Grant G, Swanson F J, Wolman M G. Pattern and origin of stepped-bed morphology in high-gradient streams, western Cascades, Oregon[J]. Geological Society of America Bulletin,1990,102:340-352.

[15] Andre Zimmermann, Michael Church. Channel morphology, gradient profiles and bed stresses during flood in a step-pool channel[J]. Geomorphology, 2001, 40: 311-327.

[16] Xu Jiang, Wang Zhaoyin. The formative mechanism of step-pool system and its role in bed stabilization of mountain stream[J]. Journal of Sediment Research, 2003, (5):21-27. [徐江,王兆印.山区河流阶梯深潭的发育及其稳定河床的作用[J].泥沙研究, 2003,(5):21-27.]

[17] Xu jiang, Wang Zhaoyin. Formation and mechanism of step-pool system[J]. Journal of Hydraulic Engineering, 2004, (10):48-55. [徐江, 王兆印. 阶梯深潭的形成及作用机理[J].水利学报, 2004, (10):48-55.]

[18] Zhaoyin Wang, Jiang Xu, Changzhi Li. Development of step-pool sequence and its effects in resistance and stream bed stability[J]. International Journal of Sediment Research, 2004, 19(3):161-171.

[19] Plafkin J L, Barbour M T, Porter K D, et al. Rapid Bioassessment Protocols for Use in Streams and Rivers[R]. EPA444/ 4-89-001. U.S. Environmental Protection Agency, Washington DC,1989.

[20] Hobart and Willian Smith Colleges. Java Components for Mathematics[EB/OL]. http://math.hws.edu/javamath/ryan/DiversityTest.html,2001.

[21] United States Fish and Wildlife Service (USFWS). Standards for the Development of Habitat Suitability Index Models (ESM 103)[R]. US Department of the Interior, Fish and Wildlife Service, Washington DC,1981.

[22] Schamberger M, Farmer A H, Terrell J W. Habitat Suitability Index Models: Introduction. FWS/OBS-82/10. U.S Department of the Interior[R]. US Fish and Wildlife Service, Washington DC,1982.

[23] Stalnaker C, Lamb B L, Henriksen J, et al. The instream flow increamental methodology: A Primer for IFIM[M]. National Ecology Research Center, Internal Publication, National Biological Survey, Fort Collins, CO. 1994.

[24] Downes B, Lake P S, Schreiber E S G. Habitat structure, resources and diversity: The separate effects of surface roughness and macroalgae on stream invertebrates[J]. Oecologia, 2000, 123:569-581.

[25] Zhao-yin Wang, Joseph H W Lee. Integrated River Management[M].Tsinghua University,2004.

[26] Zhaoyin Wang. Outlook for sediment research[J]. Acta Geographica Sinica, s1998,53(3):245-255. [王兆印. 泥沙研究的发展趋势和新课题[J].地理学报, 1998, 53 (3): 245-255.]

 

[1] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[2] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[3] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[4] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[5] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[6] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[7] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.
[8] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
[9] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[10] 张永民. 生物多样性的保育及可持续利用对策[J]. 地球科学进展, 2009, 24(6): 662-667.
[11] 李新荣,何明珠,贾荣亮. 黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J]. 地球科学进展, 2008, 23(7): 685-691.
[12] 王丽玲,林景星,胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
[13] 周杨明,于秀波,于贵瑞. 自然资源和生态系统管理的生态系统方法:概念、原则与应用[J]. 地球科学进展, 2007, 22(2): 171-178.
[14] 孙松,孙晓霞. 国际海洋生物普查计划[J]. 地球科学进展, 2007, 22(10): 1081-1086.
[15] 张志强. 地球难以承载人类重负——《生命行星报告2004》解读[J]. 地球科学进展, 2005, 20(4): 378-383.
阅读次数
全文


摘要