Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (4): 407-415    DOI: 10.1167/j.issn.1001-8166.2015.04.0407
综述与评述     
中国新近纪哺乳动物群的演化与青藏高原隆升的关系
邓涛1, 2, 3, 王晓鸣1, 4, 王世骐1, 2, 李强1, 2, 侯素宽1
1. 中国科学院古脊椎动物与古人类研究所,脊椎动物演化与人类起源重点实验室,北京 100044; 2. 中国科学院青藏高原地球科学卓越创新中心,北京 100101; 3. 西北大学地质学系,陕西 西安710069; 4. 美国洛杉矶自然历史博物馆古脊椎动物学部,洛杉矶CA 90007
Evolution of the Chinese Neogene Mammalian Faunas and its Relationship to Uplift of the Tibetan Plateau
Deng Tao1, 2, 3, Wang Xiaoming1, 4, Wang Shiqi1, 2, Li Qiang1, 2, Hou Sukuan1
1. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044,China; 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101,China; 3. Department of Geology, Northwest University, Xi’an 710069,China; 4. Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
 全文: PDF(1610 KB)   HTML
摘要:

新近纪哺乳动物的起源、辐射、扩散、绝灭等方面反映了气候环境的重大变化,晚新生代青藏高原的形成对东亚地区哺乳动物的演化具有直接而深远的影响。高原的隆升使自然环境发生改变,环境的变化又导致动物组成和分布的分异,以及动物对环境适应性的调整。中国新近纪哺乳动物化石研究的结果不仅表明哺乳动物群的组成和特征具有明显的区域性差异,而且中国还是一些代表性门类的起源扩散中心,也是哺乳动物洲际迁徙的关键通道。青藏高原新近纪晚期的哺乳动物群具有非常重要的意义,因为在随之而来的第四纪冰期中这些寒冷适应性动物获得了优势地位,由此成为现代动物地理区系和多样性的基础。通过以点带面的综合研究,将能够全面地认识新近纪动物地理区系对重大气候事件的响应,更准确地判断青藏高原隆升对陆地生态系统的影响。

关键词: 陆地生态系统新生代生物多样性地理区系西藏    
Abstract:

The origin, radiation, dispersal, and extinction of the Neogene mammals provide important insights in our understanding of mammalian geographical distribution and regional differentiations, and such an evolutionary history can, in turn, reflect significant changes in climate and environments. Mammals are very sensitive to climatic and environmental changes, and their distribution is closely related to their natural habitats. Throughout the late Cenozoic, the formation of the Tibetan Plateau also had a profound influence on the evolution of mammals in East Asia. The uplifting plateau was a major drive in changes of natural environments, which have a direct impact on the differentiation of the faunal composition and distribution. The Chinese Neogene mammalian fossil records are unparalleled in the world, and with its unique zoogeographical position, such a record of faunal compositions is sensitive to regional differentiations. Furthermore, China was a center of origin and dispersal for many representative mammalian groups, and also a key intersection for intercontinental migrations. Most taxa of the distinctive modern mammalian fauna of the Tibetan Plateau have long life history in this plateau, which indicate that they have long-term adaptation procedures within the high-elevation plateau. The late Neogene mammalian fossils from the Tibetan Plateau suggest that some Quaternary mammals first evolved in Tibet before the beginning of the Ice Age. The cold winters in high Tibet served as a habituation ground for the members of the megafauna, which became pre-adapted for the Ice Age, successfully expanding to the Eurasian mammoth steppe. As a result, the research on the Neogene mammalian faunas of the Tibetan Plateau will be focused, because these cold-adapted mammals were dominant in the subsequent Quaternary Ice Age, and become the basis of the modern mammalian zoogeographical patterns and biodiversities. Taking advantage of the above favorable conditions, the response of the Neogene zoogeographical regionalism to the major climatic events and more accurately judge the influence of the Tibetan Plateau uplift to the terrestrial ecosystem can be more accurately judged.

Key words: Cenozoic    Terrestrial ecosystem.    Biological diversity    Zoogeographical region    Tibet
收稿日期: 2015-01-04 出版日期: 2015-04-20
:  P52  
基金资助:

国家自然科学基金重点项目“中国新近纪哺乳动物地理区系的发展演变及其青藏高原隆升驱动”(编号:41430102); 国家重点基础研究发展计划项目“四亿年以来我国主要陆地生物群演化特征及其对环境变化的响应机制”(编号:2012CB821906)资助

作者简介: 邓涛(1963-),男,四川宜宾人,研究员,主要从事晚新生代哺乳动物、陆相地层和气候环境研究. E-mail:dengtao@ivpp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓涛
侯素宽
李强
王世骐
王晓鸣

引用本文:

邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.

Deng Tao, Wang Xiaoming, Wang Shiqi, Li Qiang, Hou Sukuan. Evolution of the Chinese Neogene Mammalian Faunas and its Relationship to Uplift of the Tibetan Plateau. Advances in Earth Science, 2015, 30(4): 407-415.

链接本文:

http://www.adearth.ac.cn/CN/10.1167/j.issn.1001-8166.2015.04.0407        http://www.adearth.ac.cn/CN/Y2015/V30/I4/407

[1] Fortelius M, Eronen J, Jernvall J, et al. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years[J]. Evolutionary Ecology Research, 2002, 4: 1 005-1 016.
[2] Barnosky A D, Hadly E A, Bascompte J, et al. Approaching a state shift in Earth’s biosphere[J]. Nature, 2012, 486: 52-58.
[3] Qiu Z X, Wu W Y, Qiu Z D. Miocene mammal faunal sequence of China: Paleozoogeography and Eurasian relationship[M]∥Rössner G E, Heissig K, eds. The Miocene Land Mammals of Europe. Munich: Verlag Dr Friedrich Pfeil, 1999: 443-456.
[4] Qiu Z D, Li C K. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China (Series D), 2005, 48: 1 246-1 258.
[5] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292: 686-693.
[6] Qiu Z D, Li C K. Rodents from the Chinese Neogene: Biogeographic relationships with Europe and North America[J]. Bulletin of the American Museum of Natural History, 2003, 279: 586-602.
[7] Qiu Z X, Qiu Z D, Deng T, et al. Neogene land mammal stages/ages of China: Toward the goal to establish an Asian land mammal stage/age scheme[M]∥Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013: 29-90.
[8] Wang X M, Flynn L J, Fortelius M. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology[M]. New York: Columbia University Press, 2013.
[9] Steininger F F, Berggren W A, Kent D V, et al. Circum-Mediterranean Neogene (Miocene and Pliocene) marine-continental chronologic correlation of European mammal units[M]∥Bernor R L, Fahlbusch V, Mittmamm H W, eds. The Evolution of Western Eurasian Neogene Mammal Faunas. New York: Columbia University Press, 1996: 7-46.
[10] Qiu Z X. Dispersals of Neogene carnivorans between Asia and North America[J]. Bulletin of the American Museum of Natural History, 2003, 279: 18-31.
[11] Deng T. New material of Hispanotherium matritense (Rhinocerotidae, Perissodactyla) from Laogou of Hezheng County (Gansu, China), with special reference to the Chinese Middle Miocene elasmotheres[J]. Geobios, 2003, 36: 141-150.
[12] Deng T. A new species of the rhinoceros Alicornops from the Middle Miocene of the Linxia Basin, Gansu, China[J]. Palaeontology, 2004, 47: 1 427-1 439.
[13] Deng T. New discovery of Iranotherium morgani (Perissodactyla, Rhinocerotidae) from the Late Miocene of the Linxia Basin in Gansu, China and its sexual dimorphism[J]. Journal of Vertebrate Paleontology, 2005, 25: 442-450.
[14] Wang X M, Tseng Z J, Takeuchi G T. Zoogeography, molecular divergence, and the fossil record: The case of an extinct fisher, Pekania palaeosinensis (Mustelidae, Mammalia), from the Late Miocene Baodeda Ula Formation, Nei Mongol[J]. Vertebrata PalAsiatica, 2012, 50: 293-307.
[15] Deng T, Wang X M, Fortelius M, et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores[J]. Science, 2011, 333: 1 285-1 288.
[16] Qiu Z X, Qiu Z D. Chronological sequence and subdivision of Chinese Neogene mammalian faunas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 116: 41-70.
[17] Flynn L J, Qiu Z X, Opdyke N D, et al. Ages of key fossil assemblages in the late Neogene terrestrial record of northern China[J]. SEPM Special Publication, 1995, 54: 365-373.
[18] Flynn L J, Wu W Y, Downs W R. Dating vertebrate microfaunas in the late Neogene record of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133: 227-242.
[19] Deng T, Downs W. Evolution of Chinese Neogene Rhinocerotidae and its response to climatic variations[J]. Acta Geologica Sinica, 2002, 76: 139-145.
[20] Wang Y, Deng T. A 25-Ma record of paleodiet and environmental change from carbon and oxygen isotopes in mammalian tooth enamel and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236: 322-338.
[21] Wang S Q, Deng T. Some evolutionary trends of Equus eisenmannae (Mammalia, Perissodactyla) in the stratigraphic sequence of Longdan, China, in comparison to modern Equus[J]. Journal of Vertebrate Paleontology, 2011, 31: 1 356-1 365.
[22] Deng T. Late Cenozoic environmental change in the Linxia Basin (Gansu, China) as indicated by mammalian cenograms[J]. Vertebrate PalAsiatica, 2009, 47: 282-298.
[23] Liu L P, Eronen J E, Fortelius M. Significant mid-latitude aridity in the middle Miocene of East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279: 201-206.
[24] Chen S K, Deng T, Hou S K, et al. Sexual dimorphism in perissodactyl rhinocerotid Chilotherium wimani from the Late Miocene of the Linxia Basin (Gansu, China)[J]. Acta Palaeontologica Polonica, 2010, 55: 587-597.
[25] Deng T, Li Q, Tseng Z J, et al. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 7 374-7 378.
[26] Deng T. Paleoecological comparison between Late Miocene localities of China and Greece based on Hipparion faunas[J]. Geodiversitas, 2006, 28: 499-516.
[27] Tseng Z J, O’Connor J K, Wang X M, et al. The first old world occurrence of the North American mustelid Sthenictis (Mammalia, Carnivora)[J]. Geodiversitas, 2009, 31: 743-751.
[28] Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152: 49-66.
[29] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411: 62-66.
[30] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445: 635-638.
[31] Cerling T E, Harris J, MacFadden B, et al. Global vegetation change through the Miocene-Pliocene boundary[J]. Nature, 1997, 389: 153-158.
[32] Zhang C F, Wang Y, Deng T, et al. C 4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene[J]. Earth and Planetary Science Letters, 2009, 287: 311-319.
[33] Biasatti D, Wang Y, Gao F, et al. Paleoecologies and paleoclimates of late Cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 2012, 44: 48-61.
[34] Wang Y, Xu Y F, Khawajia S, et al. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications[J]. Earth and Planetary Science Letters, 2013, 376: 43-53.
[35] Tseng Z J, Wang X M, Slater G J, et al. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats[J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281: 20132686, http://dx.doi.org/10.1098/rspb.2013.2686.
[36] Wang X M, Li Q, Xie G P, et al. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 81-95.
[37] Tseng Z J, Li Q, Wang X M. A new cursorial hyena from Tibet, and analysis of biostratigraphy, paleozoogeography, and dental morphology of Chasmaporthetes (Mammalia, Carnivora)[J]. Journal of Vertebrate Paleontology, 2013, 33: 1 457-1 471.
[38] Wang X M, Qiu Z D, Li Q, et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 363-385.
[39] Hassanin A, Ropiquet A. Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937[J]. Molecular Phylogenetics and Evolution,2004, 33: 896-907.
[40] Fernández M H, Vrba E S. Rapoport effect and biomic specialization in African mammals: Revisiting the climatic variability hypothesis[J]. Journal of Biogeography, 2005, 32: 903-918.
[41] Bunch T D, Wu C, Zhang Y P, et al. Phylogenetic analysis of snow sheep (Ovis nivicola) and closely related taxa[J]. Journal of Heredity, 2006, 97: 21-30.
[42] Rezaei H R, Naderi S, Chintauan-Marquier I C, et al. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae)[J]. Molecular Phylogenetics and Evolution, 2010, 54: 315-326.
[43] Qiu Zhanxiang, Wang Banyue, Li Hong, et al. First discovery of deinothere in China[J]. Vertebrata PalAsiatica, 2007, 45: 261-277. [邱占祥, 王伴月, 李虹,等. 中国首次发现恐象化石[J]. 古脊椎动物学报, 2007, 45: 261-277.]
[44] Deng Tao, Qiu Zhanxiang. First discovery of Diceros (Perissodactyla, Rhinocerotidae) in China[J]. Vertebrata PalAsiatica, 2007, 45: 287-306. [邓涛, 邱占祥. 黑犀 (奇蹄目, 犀科) 化石在中国的首次发现[J]. 古脊椎动物学报, 2007, 45: 287-306.]
[45] Qiu Z D, Qiu Z X. Early Miocene Xiejiahe and Sihong fossil localities and their faunas, eastern China[M]∥Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013:142-154.
[46] Deng T, Liang Z, Wang S Q, et al. Discovery of a Late Miocene mammalian fauna from Siziwang Banner, Inner Mongolia and its paleozoogeographical significance[J]. Chinese Science Bulletin, 2011, 56: 526-534.
[47] Wang X M, Qiu Z D, Opdyke N D. Litho-, bio-, and magnetostratigraphy and paleoenvironment of Tunggur Formation (Middle Miocene) in central Inner Mongolia, China[J]. American Museum Novitates, 2003, 3 411: 1-31.
[48] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416: 159-163.
[49] Qiu Z D, Wang X M, Li Q. Neogene faunal succession and biochronology of central Nei Mongol (Inner Mongolia)[M]∥Wang X M, Flynn L J, Fortelius M,eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013:155-186.
[50] Jin C Z, Zhang Y Q. First discovery of Promimomys (Arvicolidae) in East Asia[J]. Chinese Science Bulletin, 2005, 50: 327-332.
[51] Qiu Z D, Storch G. The Early Pliocene micromammalian fauna of Bilike, Inner Mongolia, China (Mammalia: Lipotyphla, Chiroptera, Rodentia, Lagomorpha)[J]. Senckenbergiana Lethaea, 2000, 80: 173-229.
[52] Qiu Z D. The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia, China: Jerboas[J]. Senckenbergiana Lethaea, 2003, 83: 135-147.
[53] Qiu Z D, Wang X M, Li Q. Faunal succession and biochronology of the Miocene through Pliocene in Nei Mongol (Inner Mongolia)[J]. Vertebrata PalAsiatica, 2006, 44: 164-181.
[54] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4: 153-174.
[55] Li Qiang, Zheng Shaohua, Cai Baoquan. Pliocene biostratigraphy sequence in the Nihewan Basin, Heibei, China[J]. Vertebrata PalAsiatica, 2008, 46: 210-232. [李强, 郑绍华, 蔡保全. 泥河湾盆地上新世生物地层序列与环境[J]. 古脊椎动物学报, 2008, 46: 210-232.]
[56] Li Q. Note on the cricetids from the Pliocene Gaotege locality, Nei Mongol[J]. Vertebrata PalAsiatica, 2010, 48: 247-261.
[57] Ding Z L, Yang S L. C 3 /C 4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: Evidence from pedogenic carbonateδ 13 C[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160: 291-299.
[58] Fortelius M, Eronen J, Liu L P, et al. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238: 219-227.
[59] O’Leary M A, Bloch J I, Flynn J J, et al. The placental mammal ancestor and the post-K-Pg radiation of placentals[J]. Science, 2013, 339: 662-667.
[60] Liu L P, Puolamäki K, Eronen J T, et al. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279: 2793-2799.
[61] Deng T, Qiu Z X, Wang B Y, et al. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China[M]∥Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013: 243-273.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[3] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[4] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[5] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[6] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[7] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[8] 郑洪波, 郭正堂, 邓涛. 新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠[J]. 地球科学进展, 2014, 29(11): 1280-1286.
[9] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[10] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[11] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[12] 李明松, 孙跃武, 赵国伟. 吉林延边地区汪清县大兴沟早二叠世华夏植物群的发现及其地质意义[J]. 地球科学进展, 2011, 26(3): 339-346.
[13] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[14] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[15] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.