地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1280 -1286. doi: 10.11867/j.issn.1001-8166.2014.11.1280

所属专题: 地球系统科学大会纪念专刊

上一篇    下一篇

新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠
郑洪波 1( ), 郭正堂 2, 邓涛 3   
  1. 1. 南京师范大学 地理科学学院, 南京, 210023
    2. 中国科学院地质与地球物理研究所, 北京, 100029
    3. 中国科学院古脊椎动物与古人类研究所, 北京, 100044
  • 出版日期:2014-11-27
  • 基金资助:
    中国科学院战略性先导科技专项项目“青藏高原多圈层相互作用及其资源环境效应”(编号:XDB03020301)资助.

Evolution of Topography, Drainage and Biogeography in East Asia during the Cenozoic: Summary of the Third Conference on Earth System Science

Hongbo Zheng 1( ), Zhengtang Guo 2, Tao Deng 3   

  1. 1. School of Geopgaphy Science, Nanjing Normal University, Nanjing, 210023
    2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029
    3. Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
  • Online:2014-11-27 Published:2014-11-20

新生代期间, 亚洲及周边地区地球深部过程与地表环境发生了一系列重大变革。印度板块—欧亚板块碰撞和太平洋板块俯冲驱动下的构造—地貌过程, 导致青藏高原隆升、亚洲东部岩石圈伸展减薄、西太平洋边缘海扩张, 并最终塑造了现今的宏观地形地貌和水系格局。这一系列构造地貌过程与新生代全球气候变冷、西风环流与亚洲季风环流重组、生物地理演变之间存在紧密的关联, 成为地球科学领域重大前沿与热点课题, 是开展地球深部与浅表过程、地球表层各圈层之间相互作用研究的重要切入点。

Drastic changes in the deep Earth processes and paleoenvironments on the surface occurred in Asia and surrounding regions during the Cenozoic. Driven by India-Asia collision and Pacific plate subduction, the Tibet Plateau region in the west gained its high elevation, whereas lithosphere in east China lost its thickness, and West Pacific margin seas opened, all of which led to the establishment of the present-day topography and drainage pattern. These tectonic-geomorphic processes interplayed with global cooling, re-organization of northern westerlies, Asian monsoon regime and biogeography in this region, which have become the frontier topics in earth sciences.

中图分类号: 

图1 亚洲地形格局(a)和600 km地震层析成像(b), 显示宏观地形地貌与地球深部过程的对应关系(修改自文献14)
Fig.1 Surface topography of Asia (upper) and tomographic image at 600 km depth (bottom)(modified from reference 14)
图2 亚洲地形地貌与水系分布图
Fig. 2. Topography and drainage of Asia
图3 披毛犀的起源、迁徙和分布(修改自文献[ 37 ]) (a) 西藏披毛犀的头骨和上、下颊齿;(b) 披毛犀在欧亚大陆的演化历史
Fig.3 Origin, dispersal and distribution of woolly rhino (modified from reference[ 37 ]) (a) Dorsal view of the skull (upper), occlusal view of upper cheek teeth(middle), and occlusal view of lower cheek teeth (lower) of the new woolly rhino; (b) Evolution of woolly rhino in Eurasia
[1] Wang Pinxian. Deformation of Asia and global cooling: Searching links climate and tectonics[J]. Quaternary Science, 1998, 3: 213-221.
[汪品先. 亚洲形变与全球变冷——探索气候与构造的关系[J]. 第四纪研究, 1998, 3: 213-221.]
[2] Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[3] DeCelles P, Kapp P, Gehrels G. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33, doi: 10.1002/2014TC003522.
[4] Hu Xiumian, An Wei, Wang Jian’gang. Basin evolution in the Yarlung Zangbo Suture: From Tethyan subduction to Indian-Asian collision[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[胡修棉, 安慰, 王建刚. 横过雅鲁藏布缝合带的沉积盆地演化: 从特提斯俯冲到印亚大陆碰撞[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[5] Zhang Peizhen, Zhang Huiping, Zheng Wenjun. Cenozoic tectonic evolution of East Asia[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[张培震, 张会平, 郑文俊. 东亚大陆新生代构造演化[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[6] Ji Junliang, Song Bowen, Zhang Kexin. Magnetostratigraphy of Dahonggou section in Qaidam Basin[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[季军良, 宋博文, 张克信. 柴达木盆地东北部大红沟剖面新生代磁性地层与构造隆升[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[7] Wang E, Kirby E, Furlong K, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5: 640-645.
[8] Wang C, Zhao X, Lippert P. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992.
[9] Zhang K, Wang G, Ji J, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science in China (Series D), 2010, 53(9): 1271-1294.
[10] Jia Guodong, Ma Yongjia, Sun Jimin. Paleoaltitude of Lunpola Basin at Qoligocene/Miocene boundary[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[贾国东, 马永嘉, 孙继敏. 渐新世—中新世之交青藏高原伦坡拉盆地的古高度[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[11] Bai Yan, Fang Xiaomin, Tian Xi, et al. Stable isotope paleohypsometry in southern Tibetan Plateau[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[白艳, 方小敏, 田茜, 等.青藏高原南部稳定同位素高度计[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[12] Li Chunfeng, Lin Jian, Denise Kulhanek. Evolution of oceanic lithosphere of South China Sea: New results from IODP 349[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[李春峰, 林间, Denise Kulhanek. 南海大洋岩石圈演化与沉积环境变迁——IODP 349航次新成果[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[13] Wang Ping, Zheng Hongbo, Chen Jun. Cenozoic exhumation of Huangling anticline: Sedimentary evidence from western Jianghan Basin[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[王平, 郑洪波, 陈军. 黄陵背斜的新生代剥露——来自江汉盆地西缘的沉积记录[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[14] Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research, 2006, 111: B09305, doi: 10.1029/2005JB004066.
[15] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359: 117-122.
[16] John Milliman, Katherine Farnsworth. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: University PressCambridge University Press, 2011.
[17] He Mengying, Zheng Hongbo, Bookhagen Bodo, et al. Controls on erosion intensity in the Yangtze River Basin tracked by detrital U-Pb zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140.
[18] Ren Meie, Bao Haosheng, Han Tongchun, et al. The geomorphology of the Jinshajiang valley of northwest Yunnan and problems associated with river capture[J]. Acta Geographica Sinica, 1959, 25(2): 135-155.
[任美锷, 包浩生, 韩同春.云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报, 1959, 25(2): 135-155.]
[19] Li J J, Xie S Y, Kuang M S, et al. Geomorphic evolution of the Yangtze gorges and the time of their formation[J]. Geomorphology, 2001, 41: 125-136.
[20] Zheng H B, Clift P, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7529-7960.
[21] Zheng Hongbo, Wang Ping, He Mengying. Birth of the Yangtze River: Tectonic and geomorphic processes[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[郑洪波, 王平, 何梦颖. 长江的诞生——构造与地貌过程[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[22] Ruddiman W F. Tectonic Uplift and Climatic Change[M]. New York: Plenum Press, 1997.
[23] Fang Xiaomin, Sun Jimin, Xu Zhifang. Continental weathering in western China and uplift of Tibetan Plateau[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[方小敏, 孙继敏, 许志方. 中国西部大陆剥蚀风化与青藏高原隆升[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[24] Tang Zihua, Huang Baochun, Ding Zhongli. Pollen record of Kuche area in Tarim Basin during Oligocene[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[唐自华, 黄宝春, 丁仲礼.塔里木盆地库车地区渐新世以来的孢粉记录[C]\\ 第三届地球系统科学大会摘要. 上海, 2014.]
[25] Sun X J, Wang P X. How old is the Asian monsoon? Palaeobotanical constraints from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222: 181-222.
[26] Ramstein G, Fluteau F, Besse J. Effect of orogeny, plate motion and landesea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386: 788-795.
[27] Bosboom R, Dupont-Nivet G, Houben A, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299: 385-398.
[28] Zarcos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292: 686-693.
[29] Guo Z, Ruddiman W F, Hao Q, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416: 159-163.
[30] Pettke T, Halliday A, Rea D. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J]. Paleoceanography, 2002, 17(3): 1-31, doi: 10.1029/2001PA000673.
[31] Wang Y, Cerling T E, MacFadden B. Fossil horses and carbon isotopes: New evidence for Cenozoic dietary, habitat, and ecosystem changes in North America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 107: 269-279.
[32] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of northern Pakistan: Evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115: 91-116.
[33] Morgan M, Kingston J, Marino B. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367: 162-164.
[34] Wang Y, Deng T. A 25-Ma record of paleodiet and environmental change from carbon and oxygen isotopes in mammalian tooth enamel and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236: 322-338.
[35] Zhang C F, Wang Y, Deng T, et al. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene[J]. Earth and Planetary Science Letters, 2009, 287: 311-319.
[36] Zhang C F, Wang Y, Li Q, et al. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes[J]. Earth and Planetary Science Letters, 2012, 333/334: 70-82.
[37] Deng T, Wang X M, Fortelius M, et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores[J]. Science, 2011, 333: 1285-1288.
[38] Tseng Z J, Wang X M, Slater G J, et al. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats[J]. Proccedings of the Royal Society B, 2014, 281, doi.org/10.1098/rspb.2013: 2686.
[39] [JP2]Wang X M, Tseng Z J, Li Q, et al. From ‘third pole’ to north pole: A Himalayan origin for the arctic fox[J]. Proccedings of the Royal Society B, 2014, 281, doi.org/10.1098/rspb.2014: 0893.[JP]
[40] Deng Tao. Tibetan origin of Quaternary Ice Age fauna and its northward spreading[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[邓涛. 第四纪冰期动物群的青藏高原起源及其在全北界的扩散[C]\\ 第三届地球系统科学大会摘要.上海, 2014.]
[41] Ge Xiaohong, Liu Junlai, Ren Shoumai. Influence of Tibetan Plateau uplift on tectonic-geomorphology, climate and migration of ancient humen[C]\\ Abstract of the Third Conference on Earth System Science. Shanghai, 2014.
[葛肖虹, 刘俊来, 任收麦. 青藏高原隆升对我国构造—地貌形成、气候环境变迁与古人类迁徙的影响[C]\\ 第三届地球系统科学大会摘要. 上海, 2014.]
[42] Fu Q M, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China[J]. Proceedings of the National Academy of Sciences, 2013, 110: 2223-2227.
[1] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[2] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[3] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[4] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[5] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[6] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[7] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[8] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[9] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[10] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[11] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[12] 程国栋,赵传燕,许仲林,彭守璋. 生物地理模型研究进展及在干旱半干旱区的应用[J]. 地球科学进展, 2013, 28(1): 17-23.
[13] 朱华. 云南一条新的生物地理线[J]. 地球科学进展, 2011, 26(9): 916-925.
[14] 李明松, 孙跃武, 赵国伟. 吉林延边地区汪清县大兴沟早二叠世华夏植物群的发现及其地质意义[J]. 地球科学进展, 2011, 26(3): 339-346.
[15] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
阅读次数
全文


摘要