[1] |
Pritchard H, Arthern R, Vaughan D, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[J]. Nature, 2009, 461(7 266): 971-975.
doi: 10.1038/nature08471
URL
pmid: 19776741
|
[2] |
Paolo F, Fricker H, Padman L.Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6 232): 327-331.
doi: 10.1126/science.aaa0940
URL
pmid: 25814064
|
[3] |
DeConto R, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7 596): 591-597.
doi: 10.1038/nature17145
URL
pmid: 27029274
|
[4] |
Pollard D, DeConto R. Modelling west Antarctic ice sheet growth and collapse through the past five million years[J]. Nature, 2009, 458(7 236): 329-333.
doi: 10.1038/nature07809
URL
pmid: 19295608
|
[5] |
Naish T, Powell R, Levy R.Obliquity-paced Pliocene West Antarctic ice sheet oscillations[J]. Nature,2009, 458(7 236): 322-329.
doi: 10.1038/nature07867
URL
pmid: 19295607
|
[6] |
Dutton A, Carlson A, Long A, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6 244): 153-162, doi:10.1126/science.aaa4019.
doi: 10.1126/science.aaa4019
URL
pmid: 26160951
|
[7] |
Schaefer J, Finkel R, Balco G, et al. Greenland was nearly ice-free for extended periods during the Pleistocene[J]. Nature, 2016, 540(7 632): 252-255.
doi: 10.1038/nature20146
URL
pmid: 27929018
|
[8] |
Chen X, Tung K.Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199): 897-903.
doi: 10.1126/science.1254937
URL
pmid: 25146282
|
[9] |
Menezes V, Macdonald A, Schatzman C.Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): 1-9.
doi: 10.1126/sciadv.1601426
URL
pmid: 5266476
|
[10] |
Ito T, Woloszyn M, Mazloff M.Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow[J]. Nature, 2010, 463(7 277): 80-83.
doi: 10.1038/nature08687
URL
pmid: 20054394
|
[11] |
Imbrie J, Berger A, Boyle E, et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle[J]. Paleoceanography, 1993, 8(6): 699-735.
doi: 10.1029/93PA02751
URL
|
[12] |
Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present, and Future: IODP Science Plan for 2013-2023[R].Washington DC: Intergrated Ocean Discaiery Program,2011.
|
[13] |
Wang Rujian.Progress of ocean drilling in polar regions[J]. Advance in Earth Sciences, 2003, 18(5): 697-705.
|
|
[王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.]
doi: 10.3321/j.issn:1001-8166.2003.05.009
URL
|
[14] |
Davey F, Barrett P, Cita M, et al. Drilling for Antarctic Cenozoic climate and tectonic history at Cape Roberts, Southwestern Ross Sea[J]. EOS, Transactions American Geophysical Union, 2001, 82(48): 585-600.
doi: 10.1029/01EO00339
URL
|
[15] |
Naish T, Powell R, Levy R, et al. A record of Antarctic climate and ice sheet history recovered[J]. EOS, Transactions American Geophysical Union, 2007, 88(50): 557-568.
doi: 10.1029/2007EO500001
URL
|
[16] |
Melles M, Brigham-Grette J, Pavel M, et al. 2.8 Million years of Arctic climate change from the Lake El’gygytgyn, NE Russia[J]. Science, 2012, 337(6 092): 315-320.
doi: 10.1126/science.1222135
URL
pmid: 22722254
|
[17] |
Hayes D, Davey F.A geophysical study of the Ross Sea, Antarctica[M]∥Hayes D, Frakes L,eds. Initial Reports of the Deep Sea Drilling Project. Washington DC: US Government Printing Office, 1975: 887-907.
|
[18] |
Hambrey M, McKelvey B. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region[J]. Geology, 2000, 28(10): 887-890.
doi: 10.1130/0091-7613(2000)282.0.CO;2
URL
|
[19] |
Zachos J, Breza J, Wise S.Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean[J]. Geology, 1992, 20(6): 569-573.
doi: 10.1130/0091-7613(1992)0202.3.CO;2
URL
|
[20] |
Zachos J, Quinn T, Salamy K.High resolution (104 yr) deep-sea foraminiferal stable isotope time series[J]. Paleoceanography, 1996, 11(3): 251-266.
doi: 10.1029/96PA00571
URL
|
[21] |
Kennett J.Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3 843-3 860.
doi: 10.1029/JC082i027p03843
URL
|
[22] |
DeConto R, Pollard D, Wilson P,et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2003, 455(7 213): 652-656.
doi: 10.1038/nature07337
URL
pmid: 18833277
|
[23] |
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517):686-693.
doi: 10.1126/science.1059412
URL
pmid: 11326091
|
[24] |
Zachos J, Dickens G, Zeebe R.An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 281-283.
doi: 10.1038/nature06588
URL
pmid: 18202643
|
[25] |
Eldrett J, Harding I, Wilson P,et al. Continental ice in Greenland during the Eocene and Oligocene[J]. Nature, 2007, 446(7 132): 176-179.
doi: 10.1038/nature05591
URL
pmid: 17287724
|
[26] |
St John K.Cenozoic ice-rafting history of the Central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1),doi:10.1029/2007PA001483.
doi: 10.1029/2007PA001483
URL
|
[27] |
Tripati A, Zachos J, Marincovich L, et al. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1):101-113.
doi: 10.1016/S0031-0182(01)00230-9
URL
|
[28] |
Stickley C, St John, Koc N, et al. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris[J]. Nature, 2009, 460(7 253): 376-380.
doi: 10.1038/nature08163
URL
pmid: 19606146
|
[29] |
Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 2006, 441(7 093): 610-613.
doi: 10.1038/nature04668
URL
pmid: 16752441
|
[30] |
Weller P, Stein R.Paleogene biomarker records from the central Arctic Ocean (IODP Expedition 302): Organic-carbon sources, anoxia, and sea-surface temperature[J]. Paleoceanography, 2008, 23(1), doi:10.1029/2007PA001472.
|
[31] |
DeConto R, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6 920): 245-249.
doi: 10.1038/nature01290
URL
pmid: 12529638
|
[32] |
Paelike H, Lyle M, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7 413): 609-614.
doi: 10.1038/nature11360
URL
|
[33] |
Basak C, Martin E.Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition[J]. Nature Geoscience, 2013, 6(2): 121-124.
doi: 10.1038/NGEO1707
URL
|
[34] |
Elsworth G, Galbraith E, Halverson G, et al. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation[J]. Nature Geoscience, 2017, 10(3): 213-216.
doi: 10.1038/ngeo2888
URL
|
[35] |
Goldner A, Herold N, Huber M.Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition[J]. Nature, 2014, 511(7 511): 574-578.
doi: 10.1038/nature13597
URL
pmid: 25079555
|
[36] |
Falkowski P, Katz M, Knoll A, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5 682): 354-360.
doi: 10.1126/science.1095964
URL
|
[37] |
Finkel Z, Katz M, Wright J, et al. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 8 927-8 932.
doi: 10.1073/pnas.0409907102
URL
|
[38] |
Hillenbrand C, Erhmann W.Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: Evidence from drift sediments[J]. Global and Planetary Change, 2005, 45(1): 165-191.
doi: 10.1016/j.gloplacha.2004.09.006
URL
|
[39] |
Crampton J, Cody R, Levy R,et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6 868-6 873.
doi: 10.1073/pnas.1600318113
URL
pmid: 27274061
|
[40] |
Paelike H, Norris R, Herrle J, et al. The heartbeat of the Oligocene climate system[J]. Science, 2006, 314(5 807): 1 894-1 898.
doi: 10.1126/science.1133822
URL
pmid: 17185595
|
[41] |
Flower B, Kennett J.The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
doi: 10.1016/0031-0182(94)90251-8
URL
|
[42] |
Kennett J, Barker P.Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean-drilling perspective[J]. Proceeding Ocean Drilling Program, Scientific Results, 1994, 113: 937-960.
URL
|
[43] |
Scherer R, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic Ice sheet[J]. Science,1998, 281(5 373): 82-85.
doi: 10.1126/science.281.5373.82
URL
pmid: 9651249
|
[44] |
Huybrechts P.Global change: West-side story of Antarctic ice[J]. Nature,2009, 458(7 236): 295-296.
doi: 10.1038/458295a
URL
|
[45] |
Dutton A, Lambeck K.Ice volume and sea level during the last interglacial[J]. Science,2012, 337(6 091): 216-219.
doi: 10.1126/science.1205749
URL
pmid: 22798610
|
[46] |
Hillenbrand C, Kuhn G, Frederichs T.Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?[J].Quaternary Science Reviews,2009, 28(13): 1 147-1 159.
doi: 10.1016/j.quascirev.2008.12.010
URL
|
[47] |
Weber M, Clark P, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature,2014, 510(7 503): 134-138.
doi: 10.1038/nature13397
URL
pmid: 24870232
|
[48] |
Bentley M, Fogwill C, le Brocq A, et al. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment Constraints on past ice volume change[J]. Geology, 2010, 38(5): 411-414.
doi: 10.1130/G30754.1
URL
|
[49] |
Martinez-Garcia A, Rosell-Mele A, Jaccard S, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476(7 360): 312-315.
doi: 10.1038/nature10310
URL
pmid: 21814203
|
[50] |
Jaccard S, Hayes C, Martinez-Garcia, et al. Two modes of change in Southern Ocean productivity over the past million years[J]. Science,2013, 339(6 126): 1 419-1 423.
doi: 10.1126/science.1227545
URL
|
[51] |
Lamy F, Gersonde R, Winckler G,et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods[J]. Science, 2014, 343(6 169): 403-407.
doi: 10.1126/science.1245424
URL
pmid: 24458637
|
[52] |
Wolff E, Barbante C, Becagli S, et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core[J]. Quaternary Science Reviews, 2010, 29(1): 285-295.
doi: 10.1016/j.quascirev.2009.06.013
URL
|
[53] |
Anderson L, Björk E, Holby O, et al. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition[J]. Journal of Geophysical Research, 1994, 99(C2) : 3 273-3 283.
doi: 10.1029/93JC02977
URL
|
[54] |
Ronge T A, Steph S, Tiedemann R, et al. Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years[J]. Paleoceanography, 2015, 30(2): 23-38.
doi: 10.1002/2014PA002727
URL
|
[55] |
Ronge T, Tiedemann R, Lamy F, et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool[J]. Nature Communication, 2016, 7: 11 487, doi: 10.1038/ncomms11487.
doi: 10.1038/ncomms11487
URL
pmid: 27157845
|
[56] |
Abelmann A, Gersonde R, Cortese G, et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean[J]. Paleoceanography, 2006, 21(1), doi: 10.1029/2005PA001199.
doi: 10.1029/2005PA001199
URL
|
[57] |
Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6:8 136, doi: 10.1038/ncomms9136.
doi: 10.1038/ncomms9136
URL
pmid: 4595604
|
[58] |
Bradtmiller L, Anderson R, Fleisher M, et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle[J]. Paleoceanography, 2007, 22(4), doi:10.1029/2007PA001443.
doi: 10.1029/2007PA001443
URL
|
[59] |
Griffiths J, Barker S, Hendry K, et al. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4[J]. Paleoceanography, 2013, 28(2): 307-318.
doi: 10.1002/palo.20030
URL
|
[60] |
Meckler A, Sigman D, Gibson K, et al. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean[J]. Natrue, 2013, 495(7 442): 495-499.
doi: 10.1038/nature12006
URL
pmid: 23538831
|
[61] |
Hendry K, Gong X, Knorr G, et al. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply[J]. Earth and Planetary Science Letters, 2016, 438: 122-129.
doi: 10.1016/j.epsl.2016.01.016
URL
|
[62] |
Thiede J, Myhre A.Introduction to the North Atlantic-Arctic gateways: Plate tectonic 2 paleoceanographic history and significance[M]∥Thiede J, Myhre A, Firth J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results,1996, 151: 3-23.
|
[63] |
Backman J, Moran K, McInroy D, et al. Proceedings IODP, 302: Edinburgh[R].Integrated Ocean Drilling Program Management International, Inc., 2006, doi:10.2204/iodp.proc.302.104.2006.
|
[64] |
Backman J, Jakobsson M, Frank M, ,et al. Age model. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1), PA1S03, doi:10.1029/2007PA001476.
|
[65] |
Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J].Nature,2006, 441(7 093): 601-605.
doi: 10.1038/nature04800
URL
pmid: 16738653
|
[66] |
Backman J, Moran K.Introduction to special section on Cenozoic Paleoceanography of the Central Arctic Ocean[J].Paleoceanography,2008, 23(1), doi:10.1029/2007PA001516.
doi: 10.1029/2007PA001516
URL
|
[67] |
Backman J, Moran K.Expanding the Cenozoic paleoceano-graphic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis[J]. Central European Journal of Geo-Sciences,2009,1(2): 157-175, doi:10.2478/v10085-009-0015-6.
doi: 10.2478/v10085-009-0015-6
URL
|
[68] |
Brigham-Grette J, Melles M, Pavel M, et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia[J]. Science,2013, 340(6 139): 1 421-1 426.
doi: 10.1126/science.1233137
URL
pmid: 23661643
|
[69] |
Fronval T, Jansen E.Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: Evidence from the Iceland and VØing Plateaus[C]∥Thiede J, et al, eds.Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program: College Station. Texas, 1996: 455-468, doi:10.2973/odp.proc.sr.151.134.1996.
|
[70] |
Wright J, Miller K.Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge[J]. Paleoceanography,1996, 11(2): 157-170.
doi: 10.1029/95PA03696
URL
|
[71] |
Thiede J, Winkler A, Wolf-Welling T, et al. Late Cenozoic history of the Polar North Atlantic: Results from ocean drilling[C]∥Elverhoi A,ed. Glacial and Oceanic History of the Polar North Atlantic Margins. Quaternary Science Review, 1998, 17: 185-208.
|
[72] |
Thiede J, Jenssen C, Knutz P, et al. Millions of years of Greenland Ice Sheet History recorded in ocean sediments[J]. Polarforschung, 2011, 80(3): 141-159.
URL
|
[73] |
John K E K S, Krissek L A. The late Miocene to Pleistocene ice-rafting history of southeast Greenland[J].Boreas,2002, 31(1): 28-35.
doi: 10.1111/j.1502-3885.2002.tb01053.x
URL
|
[74] |
Brinkhuis H, Schouten S, Collinson M, et al. Episodic fresh surface waters in the Eocene Arctic Ocean[J]. Nature,2006, 441(7 093): 606-609.
doi: 10.1038/nature04692
URL
pmid: 16752440
|
[75] |
Pagani M, Zachos J, Freeman K, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science,2005, 309(5 734): 600-603.
doi: 10.1126/science.1110063
URL
pmid: 15961630
|
[76] |
Stein R, Boucsein B, Meyer H.Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge[J]. Geophysical Research Letter, 2006, 33(18), doi:10.1029/2006GL026776.
doi: 10.1029/2006GL026776
URL
|
[77] |
Stein R.Upper Cretaceous/Lower Tertiary black shales near the North Pole: Organic-carbon origin and source-rock potential[J]. Marine and Petroleum Geology,2007, 24(2): 67-73.
doi: 10.1016/j.marpetgeo.2006.10.002
URL
|
[78] |
Jakobsson M, Polyak L, Darby D A. Arctic ocean: Glacial history from multibeam mapping and coring during the HOTRAX (2005) and LOMROG (2007) Expeditions[C]∥AGU Fall Meeting Abstracts. 2007.
|
[79] |
Stein R, Jokat W, Brinkhuis H, et al. Arctic Ocean Paleoceanography: Towards a continuous cenozoic record from a Greenhouse to an Icehouse World (ACEX2)[Z].IODP Proposal,2013.
|
[80] |
O’Regan M. Late Cenozoic Paleoceanography of the Central Arctic Ocean [C]∥IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2011, 14(1),doi:10.1088/1755-1315/14/1/012002.
|
[81] |
Kennicutt II M, Chown S, Cassano J, et al. Six priorities for Antarctic science[J]. Nature,2014, 512(7 512): 23-25.
doi: 10.1038/512023a
URL
pmid: 25100467
|
[82] |
ICARP IIII.Integrating Arctic Research: A Roadmap for the Future[EB/OL]. http:/icarp.iasc.info/,2016.
|