地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1236 -1244. doi: 10.11867/j.issn.1001-8166.2017.12.1236

所属专题: IODP研究 深海科学研究

大洋钻探科学目标展望 上一篇    下一篇

极地地质钻探研究进展与展望
王汝建( ), 肖文申, 章陶亮, 聂森艳   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-10-16 修回日期:2017-11-25 出版日期:2017-12-20
  • 基金资助:
    *国家自然科学基金项目“南极罗斯海扇区晚第四纪的古海洋与古气候演变历史及其对全球气候变化的响应”(编号:41776191)和“重建晚第四纪冰期—间冰期西北冰洋筏冰输运和表层洋流演变历史”(编号:41776187)资助.

Geological Drilling in Polar Regions: Progress and Perspectives

Rujian Wang( ), Wenshen Xiao, Taoliang Zhang, Senyan Nie   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
  • Received:2017-10-16 Revised:2017-11-25 Online:2017-12-20 Published:2018-03-06
  • About author:

    First author:Wang Rujian(1959-), male, Kunming City, Yunnan Province, Professor. Research areas include polar paleoceanography and paleoclimate.E-mail:rjwang@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foudation of China“Late Quaternary paleoceanographic and paleoclimatic evolutionary histories in the Antarctic Ross Sea and their responses to global climate change”(No.41776191) and “Reconstructions of late Quaternary glacial-interglacial ice rafting and surface circulation changes in the Western Arctic Ocean”(No.41776187).

南北极在全球海平面变化和碳循环中扮演着关键角色,并蕴藏着地球如何从新生代初期的温室转向现代冰室演变过程的关键信息,因而成为地球科学研究的热点地区。极地地质钻探计划(如DSDP/ODP/IODP/ICDP)研究所取得的成就令人瞩目,刷新了人类对过去全球变化的认识,成为探究地球气候系统演化的一个窗口。通过这些钻探计划,发现了新生代以来气候变冷,南北极冰盖几乎同时形成;揭示了南极冰盖形成和陆地风化的加剧,导致南极中深层水和底层水的生产加速并向北推进,造成全球大洋环流的重大变化;南大洋对大气CO2的调控作用、全球大洋深部循环、营养盐的分布和海洋生产力等多方面在不同时间尺度上都发挥着重要作用;检验了南北极冰盖形成和消融与海平面变化的关系,为人类预测未来海平面变化提供了历史依据。未来的南北极国际大洋发现(IODP)计划将继续关注于极地冰盖的演变历史、南大洋古海洋学演变历史,追踪北极海—陆环境的联系及其对全球气候的影响。这些结果将对未来全球气候预测提供重要的参考和边界条件。

The Antarctic and the Arctic regions play a key role in global sea level change and carbon cycle, and reserve key information of the Cenozoic transition from a green-house to an ice-house Earth. They have become hot spots in earth science studies. The geological drilling projects in both polar regions (e.g., DSDP/ODP/IODP/ICDP) have achieved remarkable successes, which have freshened the knowledge of global environmental and climatic evolution. Along with the Cenozoic global cooling, the timing of glaciation was almost synchronous on both the Antarctic and the Arctic. Accompanied with the Antarctic ice sheet build-up and increased terrestrial weathering, the enhanced formation of Antarctic Bottom Water exerts significant impact on global ocean circulation. The volume of unstable West Antarctic Ice Sheet fluctuates during glacial-interglacial periods showing 40 ka obliquity cycles, its volume significantly reduced or collapsed during several peak interglacials or long warm intervals. The Southern Ocean plays a significant role modulating atmospheric CO2 concentration, global deep water circulation and nutrient distribution, productivity at different time scales. Sea level responses to the waxing and waning of polar ice sheets at different time intervals were tested, which provide valuable clue for predicting future sea level changes. The upcoming IODP drilling projects on polar regions will keep focusing on the high latitude ice sheet development, Southern Ocean paleoceanographic evolution, land-ocean linkages in the Arctic, and the impacts on the global climate, which will provide important boundary conditions for predicting global future climate evolution.

中图分类号: 

图1 南北极DSDP/ODP/IODP/ICDP等钻探计划实施站位以及现代海洋环境
海冰信息来自www.nsidc.org;站位信息来自www.deepseadrilling.org,www-odp.tamu.edu,www.iodp.org;CRP,ANDRILL和Lake El’gygytgyn钻探分别来自文献[ 14 , 15 , 16 ]
Fig.1 Modern oceanographic settings and DSDP/ODP/IODP/ICDP drilling sites
Sea ice information from www.nsidc.org;Site information from www.deepseadrilling.org,www-odp.tamu.edu,www.iodp.org;CRP,ANDRILL and Lake EL’gygytgyn sites from references [14~16]
图2 全球底栖有孔虫氧同位素曲线显示新生代变冷的过程 [ 23 , 24 ]
包括南北半球冰盖出现时间 [ 24 , 25 , 26 , 27 , 28 ],北极表层海水温度来源于参考文献[29,30];红色区域为北冰洋ACEX岩芯沉积间断的时间,灰色区域为ACEX岩芯水团缺氧层位;图中PETM(ETM1)为古新世—始新世极热期,ETM2为始新世第二次极热期,EECO为早始新世气候极热期
Fig.2 Global benthic δ 18O record indicates Cenozoic cooling trend [ 23 , 24 ]
Timing of initial Antarctic and Arctic ice sheets build-up is indicated [ 24 , 25 , 26 , 27 , 28 ]. Arctic sea surface temperature is from references [29,30].In the Arctic ACEX record, hiatus interval is shaded in red, and the anoxic interval is shaded in gray. PETM: Paleocene-Eocene Thermal Maximum; ETM2: Eocene Thermal Maximum 2; EECO: Early Eocene Climate Optimum
[1] Pritchard H, Arthern R, Vaughan D, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[J]. Nature, 2009, 461(7 266): 971-975.
doi: 10.1038/nature08471     URL     pmid: 19776741
[2] Paolo F, Fricker H, Padman L.Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6 232): 327-331.
doi: 10.1126/science.aaa0940     URL     pmid: 25814064
[3] DeConto R, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7 596): 591-597.
doi: 10.1038/nature17145     URL     pmid: 27029274
[4] Pollard D, DeConto R. Modelling west Antarctic ice sheet growth and collapse through the past five million years[J]. Nature, 2009, 458(7 236): 329-333.
doi: 10.1038/nature07809     URL     pmid: 19295608
[5] Naish T, Powell R, Levy R.Obliquity-paced Pliocene West Antarctic ice sheet oscillations[J]. Nature,2009, 458(7 236): 322-329.
doi: 10.1038/nature07867     URL     pmid: 19295607
[6] Dutton A, Carlson A, Long A, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6 244): 153-162, doi:10.1126/science.aaa4019.
doi: 10.1126/science.aaa4019     URL     pmid: 26160951
[7] Schaefer J, Finkel R, Balco G, et al. Greenland was nearly ice-free for extended periods during the Pleistocene[J]. Nature, 2016, 540(7 632): 252-255.
doi: 10.1038/nature20146     URL     pmid: 27929018
[8] Chen X, Tung K.Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199): 897-903.
doi: 10.1126/science.1254937     URL     pmid: 25146282
[9] Menezes V, Macdonald A, Schatzman C.Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): 1-9.
doi: 10.1126/sciadv.1601426     URL     pmid: 5266476
[10] Ito T, Woloszyn M, Mazloff M.Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow[J]. Nature, 2010, 463(7 277): 80-83.
doi: 10.1038/nature08687     URL     pmid: 20054394
[11] Imbrie J, Berger A, Boyle E, et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle[J]. Paleoceanography, 1993, 8(6): 699-735.
doi: 10.1029/93PA02751     URL    
[12] Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present, and Future: IODP Science Plan for 2013-2023[R].Washington DC: Intergrated Ocean Discaiery Program,2011.
[13] Wang Rujian.Progress of ocean drilling in polar regions[J]. Advance in Earth Sciences, 2003, 18(5): 697-705.
[王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.]
doi: 10.3321/j.issn:1001-8166.2003.05.009     URL    
[14] Davey F, Barrett P, Cita M, et al. Drilling for Antarctic Cenozoic climate and tectonic history at Cape Roberts, Southwestern Ross Sea[J]. EOS, Transactions American Geophysical Union, 2001, 82(48): 585-600.
doi: 10.1029/01EO00339     URL    
[15] Naish T, Powell R, Levy R, et al. A record of Antarctic climate and ice sheet history recovered[J]. EOS, Transactions American Geophysical Union, 2007, 88(50): 557-568.
doi: 10.1029/2007EO500001     URL    
[16] Melles M, Brigham-Grette J, Pavel M, et al. 2.8 Million years of Arctic climate change from the Lake El’gygytgyn, NE Russia[J]. Science, 2012, 337(6 092): 315-320.
doi: 10.1126/science.1222135     URL     pmid: 22722254
[17] Hayes D, Davey F.A geophysical study of the Ross Sea, Antarctica[M]∥Hayes D, Frakes L,eds. Initial Reports of the Deep Sea Drilling Project. Washington DC: US Government Printing Office, 1975: 887-907.
[18] Hambrey M, McKelvey B. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region[J]. Geology, 2000, 28(10): 887-890.
doi: 10.1130/0091-7613(2000)282.0.CO;2     URL    
[19] Zachos J, Breza J, Wise S.Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean[J]. Geology, 1992, 20(6): 569-573.
doi: 10.1130/0091-7613(1992)0202.3.CO;2     URL    
[20] Zachos J, Quinn T, Salamy K.High resolution (104 yr) deep-sea foraminiferal stable isotope time series[J]. Paleoceanography, 1996, 11(3): 251-266.
doi: 10.1029/96PA00571     URL    
[21] Kennett J.Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3 843-3 860.
doi: 10.1029/JC082i027p03843     URL    
[22] DeConto R, Pollard D, Wilson P,et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2003, 455(7 213): 652-656.
doi: 10.1038/nature07337     URL     pmid: 18833277
[23] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517):686-693.
doi: 10.1126/science.1059412     URL     pmid: 11326091
[24] Zachos J, Dickens G, Zeebe R.An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 281-283.
doi: 10.1038/nature06588     URL     pmid: 18202643
[25] Eldrett J, Harding I, Wilson P,et al. Continental ice in Greenland during the Eocene and Oligocene[J]. Nature, 2007, 446(7 132): 176-179.
doi: 10.1038/nature05591     URL     pmid: 17287724
[26] St John K.Cenozoic ice-rafting history of the Central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1),doi:10.1029/2007PA001483.
doi: 10.1029/2007PA001483     URL    
[27] Tripati A, Zachos J, Marincovich L, et al. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1):101-113.
doi: 10.1016/S0031-0182(01)00230-9     URL    
[28] Stickley C, St John, Koc N, et al. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris[J]. Nature, 2009, 460(7 253): 376-380.
doi: 10.1038/nature08163     URL     pmid: 19606146
[29] Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 2006, 441(7 093): 610-613.
doi: 10.1038/nature04668     URL     pmid: 16752441
[30] Weller P, Stein R.Paleogene biomarker records from the central Arctic Ocean (IODP Expedition 302): Organic-carbon sources, anoxia, and sea-surface temperature[J]. Paleoceanography, 2008, 23(1), doi:10.1029/2007PA001472.
[31] DeConto R, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6 920): 245-249.
doi: 10.1038/nature01290     URL     pmid: 12529638
[32] Paelike H, Lyle M, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7 413): 609-614.
doi: 10.1038/nature11360     URL    
[33] Basak C, Martin E.Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition[J]. Nature Geoscience, 2013, 6(2): 121-124.
doi: 10.1038/NGEO1707     URL    
[34] Elsworth G, Galbraith E, Halverson G, et al. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation[J]. Nature Geoscience, 2017, 10(3): 213-216.
doi: 10.1038/ngeo2888     URL    
[35] Goldner A, Herold N, Huber M.Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition[J]. Nature, 2014, 511(7 511): 574-578.
doi: 10.1038/nature13597     URL     pmid: 25079555
[36] Falkowski P, Katz M, Knoll A, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5 682): 354-360.
doi: 10.1126/science.1095964     URL    
[37] Finkel Z, Katz M, Wright J, et al. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 8 927-8 932.
doi: 10.1073/pnas.0409907102     URL    
[38] Hillenbrand C, Erhmann W.Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: Evidence from drift sediments[J]. Global and Planetary Change, 2005, 45(1): 165-191.
doi: 10.1016/j.gloplacha.2004.09.006     URL    
[39] Crampton J, Cody R, Levy R,et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6 868-6 873.
doi: 10.1073/pnas.1600318113     URL     pmid: 27274061
[40] Paelike H, Norris R, Herrle J, et al. The heartbeat of the Oligocene climate system[J]. Science, 2006, 314(5 807): 1 894-1 898.
doi: 10.1126/science.1133822     URL     pmid: 17185595
[41] Flower B, Kennett J.The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
doi: 10.1016/0031-0182(94)90251-8     URL    
[42] Kennett J, Barker P.Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean-drilling perspective[J]. Proceeding Ocean Drilling Program, Scientific Results, 1994, 113: 937-960.
URL    
[43] Scherer R, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic Ice sheet[J]. Science,1998, 281(5 373): 82-85.
doi: 10.1126/science.281.5373.82     URL     pmid: 9651249
[44] Huybrechts P.Global change: West-side story of Antarctic ice[J]. Nature,2009, 458(7 236): 295-296.
doi: 10.1038/458295a     URL    
[45] Dutton A, Lambeck K.Ice volume and sea level during the last interglacial[J]. Science,2012, 337(6 091): 216-219.
doi: 10.1126/science.1205749     URL     pmid: 22798610
[46] Hillenbrand C, Kuhn G, Frederichs T.Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?[J].Quaternary Science Reviews,2009, 28(13): 1 147-1 159.
doi: 10.1016/j.quascirev.2008.12.010     URL    
[47] Weber M, Clark P, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature,2014, 510(7 503): 134-138.
doi: 10.1038/nature13397     URL     pmid: 24870232
[48] Bentley M, Fogwill C, le Brocq A, et al. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment Constraints on past ice volume change[J]. Geology, 2010, 38(5): 411-414.
doi: 10.1130/G30754.1     URL    
[49] Martinez-Garcia A, Rosell-Mele A, Jaccard S, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476(7 360): 312-315.
doi: 10.1038/nature10310     URL     pmid: 21814203
[50] Jaccard S, Hayes C, Martinez-Garcia, et al. Two modes of change in Southern Ocean productivity over the past million years[J]. Science,2013, 339(6 126): 1 419-1 423.
doi: 10.1126/science.1227545     URL    
[51] Lamy F, Gersonde R, Winckler G,et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods[J]. Science, 2014, 343(6 169): 403-407.
doi: 10.1126/science.1245424     URL     pmid: 24458637
[52] Wolff E, Barbante C, Becagli S, et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core[J]. Quaternary Science Reviews, 2010, 29(1): 285-295.
doi: 10.1016/j.quascirev.2009.06.013     URL    
[53] Anderson L, Björk E, Holby O, et al. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition[J]. Journal of Geophysical Research, 1994, 99(C2) : 3 273-3 283.
doi: 10.1029/93JC02977     URL    
[54] Ronge T A, Steph S, Tiedemann R, et al. Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years[J]. Paleoceanography, 2015, 30(2): 23-38.
doi: 10.1002/2014PA002727     URL    
[55] Ronge T, Tiedemann R, Lamy F, et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool[J]. Nature Communication, 2016, 7: 11 487, doi: 10.1038/ncomms11487.
doi: 10.1038/ncomms11487     URL     pmid: 27157845
[56] Abelmann A, Gersonde R, Cortese G, et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean[J]. Paleoceanography, 2006, 21(1), doi: 10.1029/2005PA001199.
doi: 10.1029/2005PA001199     URL    
[57] Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6:8 136, doi: 10.1038/ncomms9136.
doi: 10.1038/ncomms9136     URL     pmid: 4595604
[58] Bradtmiller L, Anderson R, Fleisher M, et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle[J]. Paleoceanography, 2007, 22(4), doi:10.1029/2007PA001443.
doi: 10.1029/2007PA001443     URL    
[59] Griffiths J, Barker S, Hendry K, et al. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4[J]. Paleoceanography, 2013, 28(2): 307-318.
doi: 10.1002/palo.20030     URL    
[60] Meckler A, Sigman D, Gibson K, et al. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean[J]. Natrue, 2013, 495(7 442): 495-499.
doi: 10.1038/nature12006     URL     pmid: 23538831
[61] Hendry K, Gong X, Knorr G, et al. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply[J]. Earth and Planetary Science Letters, 2016, 438: 122-129.
doi: 10.1016/j.epsl.2016.01.016     URL    
[62] Thiede J, Myhre A.Introduction to the North Atlantic-Arctic gateways: Plate tectonic 2 paleoceanographic history and significance[M]∥Thiede J, Myhre A, Firth J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results,1996, 151: 3-23.
[63] Backman J, Moran K, McInroy D, et al. Proceedings IODP, 302: Edinburgh[R].Integrated Ocean Drilling Program Management International, Inc., 2006, doi:10.2204/iodp.proc.302.104.2006.
[64] Backman J, Jakobsson M, Frank M, ,et al. Age model. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1), PA1S03, doi:10.1029/2007PA001476.
[65] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J].Nature,2006, 441(7 093): 601-605.
doi: 10.1038/nature04800     URL     pmid: 16738653
[66] Backman J, Moran K.Introduction to special section on Cenozoic Paleoceanography of the Central Arctic Ocean[J].Paleoceanography,2008, 23(1), doi:10.1029/2007PA001516.
doi: 10.1029/2007PA001516     URL    
[67] Backman J, Moran K.Expanding the Cenozoic paleoceano-graphic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis[J]. Central European Journal of Geo-Sciences,2009,1(2): 157-175, doi:10.2478/v10085-009-0015-6.
doi: 10.2478/v10085-009-0015-6     URL    
[68] Brigham-Grette J, Melles M, Pavel M, et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia[J]. Science,2013, 340(6 139): 1 421-1 426.
doi: 10.1126/science.1233137     URL     pmid: 23661643
[69] Fronval T, Jansen E.Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: Evidence from the Iceland and VØing Plateaus[C]∥Thiede J, et al, eds.Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program: College Station. Texas, 1996: 455-468, doi:10.2973/odp.proc.sr.151.134.1996.
[70] Wright J, Miller K.Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge[J]. Paleoceanography,1996, 11(2): 157-170.
doi: 10.1029/95PA03696     URL    
[71] Thiede J, Winkler A, Wolf-Welling T, et al. Late Cenozoic history of the Polar North Atlantic: Results from ocean drilling[C]∥Elverhoi A,ed. Glacial and Oceanic History of the Polar North Atlantic Margins. Quaternary Science Review, 1998, 17: 185-208.
[72] Thiede J, Jenssen C, Knutz P, et al. Millions of years of Greenland Ice Sheet History recorded in ocean sediments[J]. Polarforschung, 2011, 80(3): 141-159.
URL    
[73] John K E K S, Krissek L A. The late Miocene to Pleistocene ice-rafting history of southeast Greenland[J].Boreas,2002, 31(1): 28-35.
doi: 10.1111/j.1502-3885.2002.tb01053.x     URL    
[74] Brinkhuis H, Schouten S, Collinson M, et al. Episodic fresh surface waters in the Eocene Arctic Ocean[J]. Nature,2006, 441(7 093): 606-609.
doi: 10.1038/nature04692     URL     pmid: 16752440
[75] Pagani M, Zachos J, Freeman K, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science,2005, 309(5 734): 600-603.
doi: 10.1126/science.1110063     URL     pmid: 15961630
[76] Stein R, Boucsein B, Meyer H.Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge[J]. Geophysical Research Letter, 2006, 33(18), doi:10.1029/2006GL026776.
doi: 10.1029/2006GL026776     URL    
[77] Stein R.Upper Cretaceous/Lower Tertiary black shales near the North Pole: Organic-carbon origin and source-rock potential[J]. Marine and Petroleum Geology,2007, 24(2): 67-73.
doi: 10.1016/j.marpetgeo.2006.10.002     URL    
[78] Jakobsson M, Polyak L, Darby D A. Arctic ocean: Glacial history from multibeam mapping and coring during the HOTRAX (2005) and LOMROG (2007) Expeditions[C]∥AGU Fall Meeting Abstracts. 2007.
[79] Stein R, Jokat W, Brinkhuis H, et al. Arctic Ocean Paleoceanography: Towards a continuous cenozoic record from a Greenhouse to an Icehouse World (ACEX2)[Z].IODP Proposal,2013.
[80] O’Regan M. Late Cenozoic Paleoceanography of the Central Arctic Ocean [C]∥IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2011, 14(1),doi:10.1088/1755-1315/14/1/012002.
[81] Kennicutt II M, Chown S, Cassano J, et al. Six priorities for Antarctic science[J]. Nature,2014, 512(7 512): 23-25.
doi: 10.1038/512023a     URL     pmid: 25100467
[82] ICARP IIII.Integrating Arctic Research: A Roadmap for the Future[EB/OL]. http:/icarp.iasc.info/,2016.
[1] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[2] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[3] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[4] 崔祥斌,孙波,田钢,蒋芸芸,张向培,郭井学,唐学远. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009, 24(4): 392-402.
[5] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[6] 吴涛,康建成,王芳,郑琰明. 全球海平面变化研究新进展[J]. 地球科学进展, 2006, 21(7): 730-737.
[7] 张明军;任贾文;孙俊英;效存德;李忠勤;秦大河;康建成. 南极冰盖 NO - 3 浓度记录研究进展[J]. 地球科学进展, 2004, 19(2): 275-282.
[8] 王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.
[9] 温家洪. 国际南极冰盖与海平面变化研究述评[J]. 地球科学进展, 2000, 15(5): 586-591.
[10] 茅绍智. 大洋钻探与全球变化(一)——南极地区显生宙晚期气候演变历史及对全球的影响[J]. 地球科学进展, 1995, 10(3): 263-266.
[11] 李忠勤,姚檀栋,谢自楚. 大气气溶胶中NO 3 - ,SO 4 2-研究[J]. 地球科学进展, 1995, 10(3): 289-295.
[12] 杨学祥; 王瑞庭. 全球海面变化的两极冰盖模型[J]. 地球科学进展, 1993, 8(4): 66-69.
阅读次数
全文


摘要