地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1267 -1276. doi: 10.11867/j.issn.1001-8166.2017.12.1267

所属专题: IODP研究 深海科学研究

大洋钻探科学目标展望 上一篇    下一篇

解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望
翦知湣( ), 党皓文   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-10-30 修回日期:2017-11-26 出版日期:2017-12-20
  • 基金资助:
    *国家自然科学基金项目“晚第四纪冰期旋回中热带海气CO 2交换格局的变化及其控制因素”(编号:41630965);国家海洋局国际合作项目“亚洲大陆边缘的古海洋与古地理演化”(编号: GASI-GEOGE-04)资助.

Reading the Past, Informing the Future: Progress and Prospective of the Recent Ocean Drilling Researches on Climate and Ocean Change

Zhimin Jian( ), Haowen Dang   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-10-30 Revised:2017-11-26 Online:2017-12-20 Published:2018-03-06
  • About author:

    First author:Jian Zhimin(1966-), male, Changde City, Hu’nan Province, Professor. Research areas include marine geology.E-mail:jian@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Changes of tropical sea-air CO 2 exchange pattern during the late Quaternary glacial cycles and their controlling factors”(No.41630965);The State Oceanic Administration of China “Paleoceanographic and paleogeographic evolution of the Asian continental margins”(No. GASI-GEOGE-04).

2013年启动的国际大洋发现计划(IODP)针对当前大气温室气体浓度急剧升高和全球变暖的气候变化现状,提出全球气候对CO2增高的响应、冰盖和海平面对全球变暖的响应、中—低纬水文循环的变化机制以及海洋碳化学体系的缓冲能力等4个科学挑战。截至2017年8月已经完成的8个IODP气候变化主题航次聚焦于亚洲—太平洋—印度洋区域的季风过程和西太平洋暖池的新生代演变,着重探索轨道—千年尺度上亚洲季风系统的变化特征和主导机制,以及构造时间尺度上亚洲季风与青藏高原隆升和剥蚀的动力联系。未来2年IODP将瞄准南半球高纬的冰盖、海冰、洋流和碳循环等气候因子,重点考察新生代西南极冰盖和海冰变化、白垩纪和古近纪南大洋的海洋环流和碳循环等。因此,IODP旨在深入探索以亚洲季风和西太平洋暖池为代表的热带海洋气候过程和以西南极冰盖为代表的高纬气候因子在多种时间尺度上的演变,为认识当前气候变化、预测未来气候趋势提供自然变化的科学依据。中国的优势在于全球季风概念和热带驱动假说方面的研究,特别是巽他陆架的气候效应。

Aiming at the current climate status, i.e., drastic rise of atmospheric greenhouse gases and the apparent trend of global warming, the International Ocean Discovery Program (IODP), launched in 2013, proposed four scientific challenges, including the response of global climate to CO2 rise, the feedback of ice-sheet and sea-level to global warming, the dynamics of the mid- and low-latitude hydro-cycle, and the mechanism of the marine carbon-chemical buffering system. By August 2017, eight IODP expeditions of climate-related themes were implemented, focusing on the Neogene evolution of the monsoon system over Asia-Pacific-Indian and the West Pacific Warm Pool, with specific interests in the variabilities and mechanisms of the Asian Monsoon system on orbital-to millennial-scales, as well as the connections between Asian Monsoon and the uplift/weathering of the Tibetan Plateau on tectonic time scale. The planned IODP expeditions in the forthcoming two years will explore the Southern high-latitude climate histories of West Antarctic ice in the Cenozoic, and Southern Ocean currents and carbon cycle in the Cretaceous-Paleogene. In sum, during the current phase of IODP (2013-2023), our knowledge about the marine climate system would be greatly advanced via deciphering the past changes in tropical processes of Asian Monsoon and West Pacific Warm Pool, as well as in high-latitude factors of the West Antarctic ice. A better scientific background of natural variability would be provided, accordingly, for predicting the future tendency in climate change. In this context, China’s strategic directions include the global monsoon concept, the tropical forcing hypothesis, and in particular the climate effect of the Sunda Shelf.

中图分类号: 

图1 2013—2019年IODP气候变化主题的航次分布示意图
数字表示IODP航次编号,红色表示截至2017年8月已完成航次,绿色表示2017—2019年计划航次;方框示对应航次主要钻探区域范围
Fig.1 Location of the IODP expeditions on climate change for 2013-2019
Numbers denote the expedition number. Red color indicates the expeditions implemented before August 2017, while green color indicates the expeditions scheduled for 2017-2019. Squares show the drilling areas of the corresponding expeditions
表1 2013—2017年已完成的IODP气候变化主题航次
Table 1 The IODP expeditions on climate change implemented during 2013-2017
表2 2017—2019年已列入计划的IODP气候变化主题航次
Table 2 The IODP expeditions on climate change scheduled for 2017-2019
图2 世界3个大陆的赤道河系
Fig.2 The equatorial river systems in the world’s three continents
[1] Bickle M, Arculus R,Barrett P, et al. Illuminating Earth’s Past, Present and Future, the Science Plan for the International Ocean Discovery Program 2013-2023[M]. Washington DC: Integrated Ocean Drilling Program Management International, 2011.
[2] Expedition 346 Scientists. Integrated Ocean Drilling Program Expedition 346 Preliminary Report: Asian Monsoon-Onset and Evolution of Millennial-scale Variability of Asian Monsoon and Its Possible Relation with Himalaya and Tibetan Plateau uplift[R]. Integrated Ocean Drilling Program, 2014, doi:10.2204/iodp.pr.2346.2014.
[3] Clemens S C, Kuhnt W, LeVay L J, et al. International Ocean Discovery Program Expedition 353 Preliminary Report: Indian Monsoon Rainfall[R]. Integrated Ocean Discovery Program, 2015,doi:10.14379/iodp.pr.14353.12015.
[4] France-Lanord C, Spiess V, Klaus A, et al.International Ocean Discovery Program Expedition 354 Preliminary Report: Bengal Fan-Neogene and Late Paleogene Record of Himalayan Orogeny and Climate: A Transect Across the Middle Bengal Fan[R]. Integrated Ocean Discovery Program, 2015,doi:10.14379/iodp.pr.14354.12015.
[5] Pandey D K, Clift P D, Kulhanek D K, et al. International Ocean Discovery Program Expedition 355 Preliminary Report: Arabian Sea Monsoon-Deep Sea Drilling in the Arabian Sea: Constraining Tectonic-monsoon Interactions in South Asia[R]. Integrated Ocean Discovery Program, 2015,doi: 10.14379/iodp.pr.355.2015.
[6] Betzler C G, Eberli G P, Alvarez-Zarikian C A, et al. International Ocean Discovery Program Expedition 359 Preliminary Report: Maldives Monsoon and Sea Level[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.pr.14359.12016.
[7] Gallagher S J, Fulthorpe C S, Bogus K, et al. International Ocean Discovery Program Expedition 356 Preliminary Report: Indonesian Throughflow—A 5 Million Year History of the Indonesian Throughflow, Australian Monsoon, and Subsidence on the Northwest Shelf of Australia[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.pr.14356.12017.
[8] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. International Ocean Discovery Program Expedition 363 Preliminary Report: Western Pacific Warm Pool-Neogene and Quaternary records of Western Pacific Warm Pool Paleoceanography[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.pr.14363.12017.
[9] Hall I R, Hemming S R, LeVay L J, et al. International Ocean Discovery Program Expedition 361 Preliminary Report: South African Climates (Agulhas LGM Density Profile)[R]. Integrated Ocean Discovery Program, 2016,doi:10.14379/iodp.pr.14361.12016.
[10] Wang Pinxian, Wang Bin, Cheng Hai, et al. The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 173, doi, 10.1016/j.earscirev.2017.1007.1006.
doi: 10.1016/j.earscirev.2017.07.006     URL    
[11] McKay R M, De Santis L, Kulhanek D K. Expedition 374 Scientific Prospectus: Ross Sea West Antarctic Ice Sheet History[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.sp.14374.12017.
[12] Gohl K, Wellner J, Hillenbrand C, et al. IODP Proposal 839-Full (Amundsen Sea Ice Sheet History): Development and Sensitivity of the West Antarctic Ice Sheet Tested from Drill Records of the Amundsen Sea Embayment[R]. Integrated Ocean Discovery Program, 2013.
[13] Hobbs R, Huber B, Bogus K A.Expedition 369 Scientific Prospectus: Australia Cretaceous Climate and Tectonics[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.sp.14369.12016.
[14] Sutherland R, Dickens G R, Blum P.Expedition 371 Scientific Prospectus: Tasman Frontier Subduction Initiation and Paleogene Climate[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.sp.14371.12016.
[15] Thomas D J, Lyle M W, Rea D K, et al. IODP Proposal 567-Full (South Pacific Paleogene Climate): Paleogene South Pacific APC Transect: Heat Transport and Water Column Structure During an Extreme Warm Climate[R]. Integrated Ocean Discovery Program, 2007.
[16] Weber M E, Belt S, Clark P U, et al. IODP Proposal 902-Full (Iceberg Alley Paleoceanography): Late Neogene Reconstruction of Ice-sheet, Atmosphere, and Ocean Dynamics in Iceberg Alley[R]. Integrated Ocean Discovery Program, 2016.
[17] Huber M, Brinkhuis H, Stickley C E, et al. Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters?[J]. Paleoceanography,2004,19(4), doi:10.1029/2004PA001014.
doi: 10.1029/2004PA001014     URL    
[18] Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva: IPCC, 2014: 39-54.
[19] Wang Pinxian.Global monsoon in a geological perspective[J]. Chinese Science Bulletin,2009, 54(7):1 113-1 136.
[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5): 535-556.]
URL    
[20] Wang Pinxian, Wang Bin, Cheng Hai, et al. The global monsoon across timescales: Coherent variability of regional monsoons[J]. Climate of the Past,2014, 10(6), doi:10.5194/cp-5110-2007-2014.
[21] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature,2001, 414(6 865): 738-742.
doi: 10.1038/414738a     URL     pmid: 11742396
[22] Whipple K X.The influence of climate on the tectonic evolution of mountain belts[J]. Nature Geoscience,2009, 2(2): 97-104.
doi: 10.1038/ngeo413     URL    
[23] Guo Zhengtang, Ruddiman W F, Hao Qingzhen, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002, 416(6 877): 159-163.
doi: 10.1038/416159a     URL    
[24] Jia Guodong, Peng Pingan, Zhao Quanhong, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea[J]. Geology, 2003, 31(12): 1 093-1 096.
doi: 10.1130/G19992.1     URL    
[25] Sun Xiangjun,Wang Pinxian.How old is the Asian monsoon system? Palaeobotanical records from China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,222(3/4):181-222.
doi: 10.1097/BOR.0b013e32832ca41c     URL    
[26] Kroon D, Steens T N F, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea[C]∥Proceedings of the ODP. Scientific Results, 1991, 117: 257-264.
[27] Prell W L, Kutzbach J E.Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 1992, 360(6 405): 647-653.
doi: 10.1038/360647a0     URL    
[28] Rodriguez M, Chamot-Rooke N, Huchon P, et al.The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in late Miocene[J]. Earth and Planetary Science Letters, 2014, 394: 1-12.
doi: 10.1016/j.epsl.2014.03.011     URL    
[29] Clemens S, Prell W L, Murray D W, et al. Forcing mechanisms of the Indian Ocean monsoon[J]. Nature, 1991, 353(6 346): 720-725.
doi: 10.1038/353720a0     URL    
[30] Clemens S C, Prell W L.A 350,000-year summer-monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea[J]. Marine Geology, 2003, 201(1): 35-51.
doi: 10.1016/S0025-3227(03)00207-X     URL    
[31] Sun Youbin, Clemens S C, An Zhisheng, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Ma monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1): 33-48.
doi: 10.1016/j.quascirev.2005.07.005     URL    
[32] Wang Yongjin, Cheng Hai, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
doi: 10.1038/nature06692     URL     pmid: 18305541
[33] Weldeab S, Lea D W, Schneider R R, et al. 155,000 years of West African monsoon and ocean thermal evolution[J]. Science, 2007, 316(5 829):1 303-1 307.
doi: 10.1126/science.1140461     URL     pmid: 17540896
[34] Jian Zhimin, Jin Haiyan.Ocean carbon cycle and tropical forcing of climate evolution[J]. Advances in Earth Sciences, 2008, 23(3): 221-227.
[翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3): 221-227.]
doi: 10.3321/j.issn:1001-8166.2008.03.001     URL    
[35] Lea D W.The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity[J]. Journal of Climate, 2004, 17(11): 2 170-2 179.
doi: 10.1175/1520-0442(2004)0172.0.CO;2     URL    
[36] Linsley B K, Rosenthal Y, Oppo D W.Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8): 578-583, doi: 10.1038/NGEO920.
doi: 10.1038/ngeo920     URL    
[37] Dang Haowen, Jian Zhimin, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(2),doi:10.1029/2011GL050154.
doi: 10.1029/2011GL050154     URL    
[38] Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 275(5 301): 805-807.
doi: 10.1126/science.275.5301.805     URL     pmid: 9012341
[39] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: Insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25(3), doi:10.1029/2010PA001980.
doi: 10.1029/2010PA001980     URL    
[40] Tachikawa K, Cartapanis O, Vidal L, et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka[J]. Quaternary Science Reviews,2011, 30(25): 3 716-3 727.
doi: 10.1016/j.quascirev.2011.09.016     URL    
[41] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate[J].Nature Geoscience, 2013, 6(6): 485-491.
doi: 10.1038/ngeo1823     URL    
[42] Wang Pinxian, Tian Jun, Lourens L J.Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J].Earth and Planetary Science Letter,2010, 290(3/4): 319-330.
doi: 10.1016/j.epsl.2009.12.028     URL    
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要