Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (12): 1267-1276    DOI: 10.11867/j.issn.1001-8166.2017.12.1267
大洋钻探科学目标展望     
解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望
翦知湣(), 党皓文
同济大学海洋地质国家重点实验室,上海 200092
Reading the Past, Informing the Future: Progress and Prospective of the Recent Ocean Drilling Researches on Climate and Ocean Change
Zhimin Jian(), Haowen Dang
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
 全文: PDF(3835 KB)   HTML
摘要:

2013年启动的国际大洋发现计划(IODP)针对当前大气温室气体浓度急剧升高和全球变暖的气候变化现状,提出全球气候对CO2增高的响应、冰盖和海平面对全球变暖的响应、中—低纬水文循环的变化机制以及海洋碳化学体系的缓冲能力等4个科学挑战。截至2017年8月已经完成的8个IODP气候变化主题航次聚焦于亚洲—太平洋—印度洋区域的季风过程和西太平洋暖池的新生代演变,着重探索轨道—千年尺度上亚洲季风系统的变化特征和主导机制,以及构造时间尺度上亚洲季风与青藏高原隆升和剥蚀的动力联系。未来2年IODP将瞄准南半球高纬的冰盖、海冰、洋流和碳循环等气候因子,重点考察新生代西南极冰盖和海冰变化、白垩纪和古近纪南大洋的海洋环流和碳循环等。因此,IODP旨在深入探索以亚洲季风和西太平洋暖池为代表的热带海洋气候过程和以西南极冰盖为代表的高纬气候因子在多种时间尺度上的演变,为认识当前气候变化、预测未来气候趋势提供自然变化的科学依据。中国的优势在于全球季风概念和热带驱动假说方面的研究,特别是巽他陆架的气候效应。

关键词: 国际大洋发现计划气候变化全球季风西太平洋暖池    
Abstract:

Aiming at the current climate status, i.e., drastic rise of atmospheric greenhouse gases and the apparent trend of global warming, the International Ocean Discovery Program (IODP), launched in 2013, proposed four scientific challenges, including the response of global climate to CO2 rise, the feedback of ice-sheet and sea-level to global warming, the dynamics of the mid- and low-latitude hydro-cycle, and the mechanism of the marine carbon-chemical buffering system. By August 2017, eight IODP expeditions of climate-related themes were implemented, focusing on the Neogene evolution of the monsoon system over Asia-Pacific-Indian and the West Pacific Warm Pool, with specific interests in the variabilities and mechanisms of the Asian Monsoon system on orbital-to millennial-scales, as well as the connections between Asian Monsoon and the uplift/weathering of the Tibetan Plateau on tectonic time scale. The planned IODP expeditions in the forthcoming two years will explore the Southern high-latitude climate histories of West Antarctic ice in the Cenozoic, and Southern Ocean currents and carbon cycle in the Cretaceous-Paleogene. In sum, during the current phase of IODP (2013-2023), our knowledge about the marine climate system would be greatly advanced via deciphering the past changes in tropical processes of Asian Monsoon and West Pacific Warm Pool, as well as in high-latitude factors of the West Antarctic ice. A better scientific background of natural variability would be provided, accordingly, for predicting the future tendency in climate change. In this context, China’s strategic directions include the global monsoon concept, the tropical forcing hypothesis, and in particular the climate effect of the Sunda Shelf.

Key words: International Ocean Discovery Program (IODP)    Climate change    Global monsoon    West Pacific Warm Pool.
收稿日期: 2017-10-30 出版日期: 2018-03-06
ZTFLH:  P756.5  
基金资助: *国家自然科学基金项目“晚第四纪冰期旋回中热带海气CO2交换格局的变化及其控制因素”(编号:41630965);国家海洋局国际合作项目“亚洲大陆边缘的古海洋与古地理演化”(编号: GASI-GEOGE-04)资助.
作者简介:

作者简介:翦知湣(1966-),男,湖南常德人,教授,主要从事海洋地质学研究.E-mail:jian@tongji.edu.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
翦知湣
党皓文

引用本文:

翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.

Zhimin Jian, Haowen Dang. Reading the Past, Informing the Future: Progress and Prospective of the Recent Ocean Drilling Researches on Climate and Ocean Change. Advances in Earth Science, 2017, 32(12): 1267-1276.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.12.1267        http://www.adearth.ac.cn/CN/Y2017/V32/I12/1267

图1  2013—2019年IODP气候变化主题的航次分布示意图数字表示IODP航次编号,红色表示截至2017年8月已完成航次,绿色表示2017—2019年计划航次;方框示对应航次主要钻探区域范围
IODP
航次
航次主题 钻探区域 IODP站位 航次时间 取芯
总长/m
首席科学家
363 西太平洋暖池 澳大利亚西北岸外,巴布亚新几内亚东部岸外,卡洛琳海 U1482~U1490 2016年
10~12月
6 956 Rosenthal Y
Holbourn A
361 非洲南部气候 南非岸外 U1474~U1479 2016年
1~3月
5 176 Hall I
Hemming S
359 马尔代夫季风
和海平面
马尔代夫 U1465~U1472 2015年
9~11月
3 097 Betzler C
Eberli G
356 印度尼西亚穿越流 澳大利亚西部—西北岸外 U1458~U1464 2015年
7~9月
5 185 Gallagher S
Fulthorpe C
355 阿拉伯海季风 东阿拉伯海(印度扇) U1456~U1457 2015年
3~5月
1 722 Pandey D
Clift P
354 孟加拉扇 孟加拉扇 U1449~U1455 2015年
1~3月
1 727 France-Lanord C
Spiess V
353 印度季风 孟加拉湾 U1443~U1448 2014年11月至
2015年1月
4 280 Clemens S
Kuhnt W
346 亚洲季风 日本海和中国东海 U1422~U1429 2013年
7~9月
6 135 Tada R
Murray R W
表1  2013—2017年已完成的IODP气候变化主题航次
IODP
航次
航次主题 钻探区域 计划
站位数量
航次时间 首席科学家 最深钻探
目标年龄
371 塔斯曼前沿俯冲和
古近纪气候
塔斯曼海 6 2017年7~9月 Sutherland R
Dickens G
新生代
369 澳大利亚白垩纪气
候和构造
西南澳大利亚岸外 7 2017年9~11月 Huber B
Hobbs R
三叠纪
374 罗斯海西南极冰盖
历史
罗斯海 6 2018年1~3月 McKay R
De Santis L
早中新世
378 南太平洋古近纪
气候
亚极地西南太平洋 9 2018年10~12月 Thomas D
R?hl U
古近纪
379 阿蒙森海西南极
冰盖历史
阿蒙森海 6 2019年1~3月 Gohl K
Wellner J
晚白垩纪
382 冰山排泄通道古海洋学和南福克兰陆坡堆积体 亚极地西南大西洋 6 2019年3~5月 Weber M
(待确定)
中中新世
383 太平洋南极绕极流
动力学
亚极地南太平洋 6 2019年5~7月 (待确定)
(待确定)
/
表2  2017—2019年已列入计划的IODP气候变化主题航次
图2  世界3个大陆的赤道河系
[1] Bickle M, Arculus R,Barrett P, et al. Illuminating Earth’s Past, Present and Future, the Science Plan for the International Ocean Discovery Program 2013-2023[M]. Washington DC: Integrated Ocean Drilling Program Management International, 2011.
[2] Expedition 346 Scientists. Integrated Ocean Drilling Program Expedition 346 Preliminary Report: Asian Monsoon-Onset and Evolution of Millennial-scale Variability of Asian Monsoon and Its Possible Relation with Himalaya and Tibetan Plateau uplift[R]. Integrated Ocean Drilling Program, 2014, doi:10.2204/iodp.pr.2346.2014.
[3] Clemens S C, Kuhnt W, LeVay L J, et al. International Ocean Discovery Program Expedition 353 Preliminary Report: Indian Monsoon Rainfall[R]. Integrated Ocean Discovery Program, 2015,doi:10.14379/iodp.pr.14353.12015.
[4] France-Lanord C, Spiess V, Klaus A, et al.International Ocean Discovery Program Expedition 354 Preliminary Report: Bengal Fan-Neogene and Late Paleogene Record of Himalayan Orogeny and Climate: A Transect Across the Middle Bengal Fan[R]. Integrated Ocean Discovery Program, 2015,doi:10.14379/iodp.pr.14354.12015.
[5] Pandey D K, Clift P D, Kulhanek D K, et al. International Ocean Discovery Program Expedition 355 Preliminary Report: Arabian Sea Monsoon-Deep Sea Drilling in the Arabian Sea: Constraining Tectonic-monsoon Interactions in South Asia[R]. Integrated Ocean Discovery Program, 2015,doi: 10.14379/iodp.pr.355.2015.
[6] Betzler C G, Eberli G P, Alvarez-Zarikian C A, et al. International Ocean Discovery Program Expedition 359 Preliminary Report: Maldives Monsoon and Sea Level[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.pr.14359.12016.
[7] Gallagher S J, Fulthorpe C S, Bogus K, et al. International Ocean Discovery Program Expedition 356 Preliminary Report: Indonesian Throughflow—A 5 Million Year History of the Indonesian Throughflow, Australian Monsoon, and Subsidence on the Northwest Shelf of Australia[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.pr.14356.12017.
[8] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. International Ocean Discovery Program Expedition 363 Preliminary Report: Western Pacific Warm Pool-Neogene and Quaternary records of Western Pacific Warm Pool Paleoceanography[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.pr.14363.12017.
[9] Hall I R, Hemming S R, LeVay L J, et al. International Ocean Discovery Program Expedition 361 Preliminary Report: South African Climates (Agulhas LGM Density Profile)[R]. Integrated Ocean Discovery Program, 2016,doi:10.14379/iodp.pr.14361.12016.
[10] Wang Pinxian, Wang Bin, Cheng Hai, et al. The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 173, doi, 10.1016/j.earscirev.2017.1007.1006.
doi: 10.1016/j.earscirev.2017.07.006
[11] McKay R M, De Santis L, Kulhanek D K. Expedition 374 Scientific Prospectus: Ross Sea West Antarctic Ice Sheet History[R]. Integrated Ocean Discovery Program, 2017, doi:10.14379/iodp.sp.14374.12017.
[12] Gohl K, Wellner J, Hillenbrand C, et al. IODP Proposal 839-Full (Amundsen Sea Ice Sheet History): Development and Sensitivity of the West Antarctic Ice Sheet Tested from Drill Records of the Amundsen Sea Embayment[R]. Integrated Ocean Discovery Program, 2013.
[13] Hobbs R, Huber B, Bogus K A.Expedition 369 Scientific Prospectus: Australia Cretaceous Climate and Tectonics[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.sp.14369.12016.
[14] Sutherland R, Dickens G R, Blum P.Expedition 371 Scientific Prospectus: Tasman Frontier Subduction Initiation and Paleogene Climate[R]. Integrated Ocean Discovery Program, 2016, doi:10.14379/iodp.sp.14371.12016.
[15] Thomas D J, Lyle M W, Rea D K, et al. IODP Proposal 567-Full (South Pacific Paleogene Climate): Paleogene South Pacific APC Transect: Heat Transport and Water Column Structure During an Extreme Warm Climate[R]. Integrated Ocean Discovery Program, 2007.
[16] Weber M E, Belt S, Clark P U, et al. IODP Proposal 902-Full (Iceberg Alley Paleoceanography): Late Neogene Reconstruction of Ice-sheet, Atmosphere, and Ocean Dynamics in Iceberg Alley[R]. Integrated Ocean Discovery Program, 2016.
[17] Huber M, Brinkhuis H, Stickley C E, et al. Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters?[J]. Paleoceanography,2004,19(4), doi:10.1029/2004PA001014.
doi: 10.1029/2004PA001014
[18] Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva: IPCC, 2014: 39-54.
[19] Wang Pinxian.Global monsoon in a geological perspective[J]. Chinese Science Bulletin,2009, 54(7):1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5): 535-556.]
[20] Wang Pinxian, Wang Bin, Cheng Hai, et al. The global monsoon across timescales: Coherent variability of regional monsoons[J]. Climate of the Past,2014, 10(6), doi:10.5194/cp-5110-2007-2014.
[21] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature,2001, 414(6 865): 738-742.
doi: 10.1038/414738a pmid: 11742396
[22] Whipple K X.The influence of climate on the tectonic evolution of mountain belts[J]. Nature Geoscience,2009, 2(2): 97-104.
doi: 10.1038/ngeo413
[23] Guo Zhengtang, Ruddiman W F, Hao Qingzhen, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002, 416(6 877): 159-163.
doi: 10.1038/416159a
[24] Jia Guodong, Peng Pingan, Zhao Quanhong, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea[J]. Geology, 2003, 31(12): 1 093-1 096.
doi: 10.1130/G19992.1
[25] Sun Xiangjun,Wang Pinxian.How old is the Asian monsoon system? Palaeobotanical records from China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,222(3/4):181-222.
doi: 10.1097/BOR.0b013e32832ca41c
[26] Kroon D, Steens T N F, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea[C]∥Proceedings of the ODP. Scientific Results, 1991, 117: 257-264.
[27] Prell W L, Kutzbach J E.Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 1992, 360(6 405): 647-653.
doi: 10.1038/360647a0
[28] Rodriguez M, Chamot-Rooke N, Huchon P, et al.The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in late Miocene[J]. Earth and Planetary Science Letters, 2014, 394: 1-12.
doi: 10.1016/j.epsl.2014.03.011
[29] Clemens S, Prell W L, Murray D W, et al. Forcing mechanisms of the Indian Ocean monsoon[J]. Nature, 1991, 353(6 346): 720-725.
doi: 10.1038/353720a0
[30] Clemens S C, Prell W L.A 350,000-year summer-monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea[J]. Marine Geology, 2003, 201(1): 35-51.
doi: 10.1016/S0025-3227(03)00207-X
[31] Sun Youbin, Clemens S C, An Zhisheng, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Ma monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1): 33-48.
doi: 10.1016/j.quascirev.2005.07.005
[32] Wang Yongjin, Cheng Hai, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
doi: 10.1038/nature06692 pmid: 18305541
[33] Weldeab S, Lea D W, Schneider R R, et al. 155,000 years of West African monsoon and ocean thermal evolution[J]. Science, 2007, 316(5 829):1 303-1 307.
doi: 10.1126/science.1140461 pmid: 17540896
[34] Jian Zhimin, Jin Haiyan.Ocean carbon cycle and tropical forcing of climate evolution[J]. Advances in Earth Sciences, 2008, 23(3): 221-227.[翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3): 221-227.]
doi: 10.3321/j.issn:1001-8166.2008.03.001
[35] Lea D W.The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity[J]. Journal of Climate, 2004, 17(11): 2 170-2 179.
doi: 10.1175/1520-0442(2004)0172.0.CO;2
[36] Linsley B K, Rosenthal Y, Oppo D W.Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8): 578-583, doi: 10.1038/NGEO920.
doi: 10.1038/ngeo920
[37] Dang Haowen, Jian Zhimin, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(2),doi:10.1029/2011GL050154.
doi: 10.1029/2011GL050154
[38] Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 275(5 301): 805-807.
doi: 10.1126/science.275.5301.805 pmid: 9012341
[39] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: Insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25(3), doi:10.1029/2010PA001980.
doi: 10.1029/2010PA001980
[40] Tachikawa K, Cartapanis O, Vidal L, et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka[J]. Quaternary Science Reviews,2011, 30(25): 3 716-3 727.
doi: 10.1016/j.quascirev.2011.09.016
[41] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate[J].Nature Geoscience, 2013, 6(6): 485-491.
doi: 10.1038/ngeo1823
[42] Wang Pinxian, Tian Jun, Lourens L J.Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J].Earth and Planetary Science Letter,2010, 290(3/4): 319-330.
doi: 10.1016/j.epsl.2009.12.028
[1] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[2] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[3] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[4] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[5] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[6] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[7] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[8] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.
[9] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[10] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[11] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[12] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[13] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[14] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[15] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.