地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1277 -1286. doi: 10.11867/j.issn.1001-8166.2017.12.1277

所属专题: 深海科学研究

大洋钻探科学目标展望 上一篇    下一篇

深部生物圈研究进展与展望
王风平 1, 2( ), 陈云如 1, 2   
  1. 1.上海交通大学微生物代谢国家重点实验室,上海 200240
    2.上海交通大学生命科学技术学院,上海 200240
  • 收稿日期:2017-10-16 修回日期:2017-11-28 出版日期:2017-12-20
  • 基金资助:
    *国家自然科学基金项目“深部生物圈生物地球化学功能研究”(编号:41525011);国家自然科学基金委员会与以色列科学基金会合作研究项目“海洋沉积物深层(产甲烷带)微生介导的铁还原作用研究”(编号:31661143022)资助.

Progress and Prospect in Deep Biosphere Investigation

Fengping Wang 1, 2( ), Yunru Chen 1, 2   

  1. 1.State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
    2.School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2017-10-16 Revised:2017-11-28 Online:2017-12-20 Published:2018-03-06
  • About author:

    First author:Wang Fengping(1971-),female,Danjiangkou City,Hubei Province,Professor. Research areas include deep biosphere.E-mail:fengpingw@sjtu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study on the geochemical function of subsurface microorganisms” (No.41525011) and “Microbe-mediated iron reduction in the deep sediment (methanogenic zone) ” ( No.31661143022).

发现海底沉积物深处乃至岩石中仍然有生命,是“大洋钻探计划”开展近半个世纪以来最令人激动的重要发现之一,即大洋“深部生物圈”的发现。近年来,深部生物圈的发现与探索已成为地质学和生物学领域最令人兴奋的研究前沿之一,生物圈前沿即深部生命、生物多样性和环境驱动的生态系统成为新的国际大洋发现计划(IODP 2013-2023)的四大研究主题之一。通过对深部生物圈研究历史进行简单回顾,介绍深部生物圈及其环境特征,目前已经完成的以探究地壳和海洋沉积物中生物圈为目标的大洋钻探计划(IODP)航次,深部生物圈研究的前沿科学问题,已经取得的重大研究进展和面临的挑战,以及中国科学家的贡献和深部生物圈的未来发展的建议与展望。

The discovery of living microorganisms deep in the marine sediments and even in the oceanic crust (the marine “deep biosphere”), is one of the most significant and exciting discoveries since the ocean drilling program began almost a half-century ago. Investigation of the deep biosphere has become the most thrilling research frontier for both geological and biological sciences. The “biosphere frontiers” has been listed as one of the four themes in the 10-year plan of the International Ocean Discovery Program (IODP 2012-2023), including deep life, biodiversity and environmental forcing of ecosystems. Here, we introduced the deep biosphere and its environmental features, several completed Integrated Ocean Drilling Program Expeditions, which targeted the subseafloor deep biosphere within the crust and sediments, and highlighted the main progress we have made in deep biosphere and deep life research, especially the contribution of Chinese scientists. Finally, we will give a perspective on the future of deep biosphere research according to the challenge we are facing and the key questions need to be answered.

中图分类号: 

图1 海洋沉积物中深古菌介导的碳循环示意图
深古菌的一些类群具有丰富多样的代谢方式,既可以降解环境中的一些难降解的大分子如芳香化合物、几丁质、纤维素和蛋白质等,发酵产生乙酸等小分子化合物,也可以利用二氧化碳和H 2自养产乙酸途径获取能量。深古菌产生的乙酸是重要的电子载体,可以被甲烷产生菌和异养细菌所利用,是深部碳循环和生态系统的重要驱动者
Fig.1 Roles of Bathyarchaeota in carbon cycling in marine sediments
Bathyarchaeota contains diversified subgroups and possesses versitile metabolic pathways. They can degrade different refractory macromolecules, such as aromatic compounds, cellulose, chitin, and extracellular protein, into small molucules such as acetate by fermentation in sedimentary environments. Meanwhile, they can obtain energy from autotrophic pathway by producing acetate from hydrogen and carbon dioxide.
The acetate produced by Bathyarchaeota is an important electron accepter that can be utilized by methanogens and heterotrophic bacteria, which makes Bathyarcaeota an important driver of deep carbon cycle and ecosystems
[1] Jørgensen B B, Boetius A.Feast and famine—Microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10): 770-781.
doi: 10.1038/nrmicro1745     URL     pmid: 17828281
[2] ZoBell C E, Anderson Q A. Vertical distribution of bacteria in marine sediments[J]. American Association of Petroleum Geologists Bulletin, 1936, 20(3): 258-269.
doi: 10.1306/3d932db2-16b1-11d7-8645000102c1865d     URL    
[3] ZoBell C E, Morita R Y. Barophilic bacteria in some deep sea sediments[J]. Journal of Bacteriology, 1957, 73(4): 563-568.
URL     pmid: 13428691
[4] ZoBell C E. Studies on the bacterial flora of marine bottom sediments[J]. Journal of Sedimentary Research, 1938, 8(1):10-18.
doi: 10.1306/D4268FD6-2B26-11D7-8648000102C1865D     URL    
[5] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos rift[J]. Science, 1979, 203: 1 073-1 083.
doi: 10.1126/science.203.4385.1073     URL    
[6] Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994, 371(6 496): 410-413.
doi: 10.1038/371410a0     URL    
[7] Wang Fengping, Lu Shulin, Orcutt B N, et al. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation[J]. Chinese Science Bulletin, 2013,58(4/5): 456-467.
doi: 10.1007/s11434-012-5358-x     URL    
[8] Schrenk M O, Huber J A, Edwards K J.Microbial provinces in the subseafloor[J]. Annaual Review of Marine Science,2010,2:279-304.
doi: 10.1146/annurev-marine-120308-081000     URL     pmid: 21141666
[9] Johnson H P, Pruis M J.Fluxes of fluid and heat from the oceanic crustal reservoir[J]. Annual Review of Marine Science, 2003, 216(4):565-574.
doi: 10.1016/S0012-821X(03)00545-4     URL    
[10] Fry J C, Parkes R J, Cragg B A, et al. Prokaryotic biodiversity and activity in the deep subseafloor biosphere[J]. FEMS Microbiology Ecology, 2008, 66(2): 181-196.
doi: 10.1111/j.1574-6941.2008.00566.x     URL     pmid: 18752622
[11] Orcutt B N, Sylvan J B, Knab N J, et al. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 361-422.
doi: 10.1128/MMBR.00039-10     URL     pmid: 3122624
[12] Whitman W B, Coleman D C, Wiebe W J.Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 6 578-6 583.
doi: 10.1073/pnas.95.12.6578     URL    
[13] Pollack H N, Hurter S J, Johnson J R.Heat flow from the Earth’s interior: Analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280.
doi: 10.1029/93RG01249     URL    
[14] Detrick R S.Seafloor spreading: Portrait of a magma chamber[J]. Nature, 2000, 406(6 796): 578-580.
doi: 10.1038/35020671     URL     pmid: 10949284
[15] Fisher A T.Marine hydrogeology: Recent accomplishments and future opportunities[J]. Hydrogeology Journal, 2005, 13(1): 69-97.
doi: 10.1007/s10040-004-0400-y     URL    
[16] Lin Huei-Ting, Cowen J P, Olson E J, et al. Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks[J]. Geochimica et Cosmochimica Acta, 2012, 85: 213-227.
doi: 10.1016/j.gca.2012.02.017     URL    
[17] Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor[J]. Trends in Microbiology, 2005, 13(9): 449-456.
doi: 10.1016/j.tim.2005.07.005     URL     pmid: 16054363
[18] Wheat C G, McManus J, Mottl M J, et al. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink[J]. Geophysical Research Letters, 2003, 30(17): 1 895.
doi: 10.1029/2003GL017318     URL    
[19] Reysenbach A L, Banta A B, Boone D R, et al. Biogeochemistry: Microbial essentials at hydrothermal vents[J]. Nature, 2000, 404(6 780): 835.
doi: 10.1038/35009029     URL     pmid: 10786781
[20] Wang Fengping, Zhou Huaiyang, Meng Jun, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 840-4 845.
doi: 10.1073/pnas.0810418106     URL    
[21] Huber J A, Butterfield D A, Baross J A.Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat[J]. Applied and Environmental Microbiology, 2002, 68(4): 1 585-1 594.
doi: 10.1128/AEM.68.4.1585-1594.2002     URL    
[22] Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4): 874-884.
doi: 10.1111/j.1462-2920.2007.01505.x     URL     pmid: 18201197
[23] Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8): 2 158-2 171.
doi: 10.1111/j.1462-2920.2011.02463.x     URL     pmid: 21418499
[24] Lonsdale P.A deep-sea hydrothermal site on a strike-slip fault[J]. Nature, 1979, 281: 531-534.
doi: 10.1038/281531a0     URL    
[25] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226: 965-968.
doi: 10.1126/science.226.4677.965     URL     pmid: 17737352
[26] Tyler P A, Young C M.Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208.
doi: 10.1017/S0025315499000235     URL    
[27] Gibson R N, Atkinson R J A, Gordon J D M. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology: An Annual Review, 2005, 43: 1-46.
URL    
[28] D’Hondt S L, Jorgensen B B, Miller D J, et al. Proceedings of the Ocean Drilling Program, Initial Reports,201[R].Ocean Drilling Program, Texas A & M University,2003, doi:10.2973/odp.proc.ir.201.2003.
[29] Expedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management Internationalxpedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management International, Inc.,2010,doi:10.2204/iodp.pr.331.2010.
[30] Expedition 329 Scientists. South Pacific Gyre Subseafloor Life[R]. IODP Preliminary Report, 329, 2011, doi: 10.2204/iodp.pr.329.2011.
[31] Expedition 336 Scientists. Mid-Atlantic Ridge Microbiology: Initiation of Long-Term Coupled Microbiological, Geochemical, and Hydrological Experimentation Within the Seafloor at North Pond, Western Flank of the Mid-Atlantic Ridge[R]. IODP Preliminary Report, 336, 2011, doi: 10.2204/iodp.pr.336.2011.
[32] Expedition 337 Scientists. Deep Coalbed Biosphere off Shimokita: Microbial Processes and Hydrocarbon System Associated with Deeply Buried Coalbed in the Ocean[R]. IODP Preliminary Report, 337, 2012, doi:10.2204/iodp.pr.337.2012.
[33] Früh-Green G L, Orcutt B N, Green S, et al. Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life[R]. International Ocean Discovery Program Preliminary Peports, 2016,doi:10.14379/iodp.pr.357.2016.
[34] Heuer V B, Inagaki F, Morono Y, et al. Expedition 370 preliminary report: Temperature limit of the deep biosphere off muroto[J]. International Ocean Discovery Program Preliminary Peports,2017, doi:10.14379/iodp.pr.370.2017.
doi: 10.14379/iodp.pr.370.2017     URL    
[35] Santelli C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust[J]. Nature, 2008, 453(7 195): 653.
doi: 10.1038/nature06899     URL     pmid: 18509444
[36] Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299(5 603): 120-123.
doi: 10.1126/science.1075653     URL     pmid: 12511653
[37] Jungbluth S P, Grote J, Lin Huei-Ting, et al. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank[J]. The ISME Journal, 2013, 7(1): 161-172.
doi: 10.1038/ismej.2012.73     URL     pmid: 3526168
[38] Zhang Xinxu.Abundance, Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms on the Western Flank of the Mid-Atlantic Ridge[D]. Shanghai: Shanghai Jiao Tong University,2016.
[张新旭. 大西洋中脊西侧翼洋壳微生物多样性、功能和代谢潜能研究[D]. 上海:上海交通大学,2016.]
[39] Zhang Xinxu, Feng Xiaoyuan, Wang Fengping.Diversity and metabolic potentials of subsurface crustal microorganisms from the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):363.
doi: 10.3389/fmicb.2016.00363     URL     pmid: 2332522
[40] Zhang Xinxu, Fang Jing, Bach W, et al. Nitrogen stimulates the growth of subsurface basalt-associated microorganisms at the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):633.
doi: 10.3389/fmicb.2016.00633     URL    
[41] Mason O U, Di Meo-Savoie C A, Van Nostrand J D, et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts[J]. The ISME Journal, 2009, 3(2): 231.
doi: 10.1038/ismej.2008.92     URL     pmid: 18843298
[42] Kallmeyer J, Pockalny R, Adhikari R R, et al. Global distribution of microbial abundance and biomass in subseafloor sediment[J]. Proceedings of the National Academy of Sciences, 2012, 109(40): 16 213-16 216.
doi: 10.1073/pnas.1203849109     URL     pmid: 22927371
[43] Lloyd K G, May M K, Kevorkian R T, et al. Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor[J]. Applied and Environmental Microbiology, 2013, 79(24): 7 790-7 799.
doi: 10.1128/AEM.02090-13     URL     pmid: 3837824
[44] D’hondt S, Inagaki F, Zarikian C A, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments[J]. Nature Geoscience, 2015, 8(4): 299-304.
doi: 10.1038/ngeo2387     URL    
[45] Inagaki F, Hinrichs K U, Kubo Y, et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor[J]. Science, 2015, 349(6 246): 420-424.
doi: 10.1126/science.aaa6882     URL     pmid: 26206933
[46] Liu Changhong, Huang Xin, Xie Tianning, et al. Exploration of cultivable fungal communities in deep coal-bearing sediments from~1.3 to 2.5 km below the ocean floor[J]. Environmental Microbiology, 2017, 19(2): 803-818.
doi: 10.1111/1462-2920.13653     URL     pmid: 28028923
[47] Lomstein B A, Langerhuus A T, D’hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment[J]. Nature, 2012, 484(7 392): 101.
doi: 10.1038/nature10905     URL     pmid: 22425999
[48] Braun S, Mhatre S S, Jaussi M, et al. Microbial turnover times in the deep seabed studied by amino acid racemization modelling[J]. Scientific Reports, 2017, 7(1):5 680.
doi: 10.1038/s41598-017-05972-z     URL     pmid: 28720809
[49] Morono Y, Terada T, Nishizawa M, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells[J]. Proceedings of the National Academy of Sciences, 2011, 108(45): 18 295-18 300.
doi: 10.1073/pnas.1107763108     URL     pmid: 21987801
[50] Trembath-Reichert E, Morono Y, Ijiri A, et al. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds[J]. Proceedings of the National Academy of Sciences, 2017,114(44):E9206-E9215.
doi: 10.1073/pnas.1707525114     URL     pmid: 29078310
[51] He Ying, Li Meng, Perumal V, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments[J]. Nature Microbiology, 2016,(1): 16 035.
doi: 10.1038/nmicrobiol.2016.35     pmid: 27572832
[52] Evans P N, Parks D H, Chadwick G L, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics[J]. Science, 2015, 350(6 259): 434-438.
doi: 10.1126/science.aac7745     URL     pmid: 26494757
[53] Davis E E, Becker K, Pettigrew T L, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 139[R].Ocean Drilling Program, Texas A & M University, 1992.
[54] Expedition 327 Scientists. Integrated Ocean Drilling Program Expedition 327 Preliminary Report Juan de Fuca Ridge-Flank Hydrogeology:The Hydrogeologic Architecture of Basaltic Oceanic Crust: Compartmentalization, Anisotropy, Microbiology, and Crustal-Scale Properties on the Eastern Flank of Juan de Fuca Ridge, eastern Pacific Ocean[R]. Integrated Ocean Drilling Program Management International, Inc., 2010, doi: 10.2204/iodp.pr.327.2010.
[55] Fisher A T, Wheat C G, Becker K, et al. Scientific and Technical Design and Deployment of Longterm, Subseafloor Observatories for Hydrogeologic and Related Experiments, IODP Expedition 301, Eastern Flank of Juan de Fuca Ridge[R]. College Station, TX Integrated Ocean Drilling Program Management International,Inc, 2005,doi:10.2204/iodp.proc.301.103.2005.
[56] State Key Laboratory of Marine Geology. Under Water Observatories: The Combination of Science and Technology[M]. Shanghai: Tongji University Press, 2011.
[57] Girguis P R, Cozen A E, DeLong E F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor[J]. Applied and Environmental Microbiology, 2005, 71(7): 3725-3733.
doi: 10.1128/AEM.71.7.3725-3733.2005     URL     pmid: 1169053
[58] Deusner C, Meyer V, Ferdelman T G.High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane[J]. Biotechnology and Bioengineering, 2010, 105(3): 524-533.
doi: 10.1002/bit.22553     URL     pmid: 19787639
[59] Jagersma G C, Meulepas R J W, Heikamp-de Jong I, et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment[J]. Environmental Microbiology, 2009, 11(12): 3 223-3 232.
doi: 10.1111/j.1462-2920.2009.02036.x     URL     pmid: 19703218
[60] Zhang Yu, Arends J B A, Van de Wiele T, et al. Bioreactor technology in marine microbiology: From design to future application[J]. Biotechnology Advances, 2011, 29(3): 312-321.
doi: 10.1016/j.biotechadv.2011.01.004     URL     pmid: 21251973
[61] Zhang Yu, Maignien L, Zhao Xianxian, et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor[J]. BMC Microbiology, 2011, 11(1): 137.
doi: 10.1186/1471-2180-11-137     URL     pmid: 21676272
[62] Lasken R S.Single-cell genomic sequencing using multiple displacement amplification[J]. Current Opinion in Microbiology, 2007, 10(5): 510-516.
doi: 10.1016/j.mib.2007.08.005     URL     pmid: 17923430
[63] Beal E J, House C H, Orphan V J.Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5 937): 184-187.
doi: 10.1126/science.1169984     URL     pmid: 19589998
[64] Behrens S, Lösekann T, Pett-Ridge J, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS[J]. Applied and Environmental Microbiology, 2008, 74(10): 3 143-3 150.
doi: 10.1128/AEM.00191-08     URL    
[65] Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group[J]. Nucleic Acids Research, 2010, 39(8): 3 204-3 223.
doi: 10.1093/nar/gkq1228     URL     pmid: 3082918
[66] Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(12): 520-536.
doi: 10.1371/journal.pbio.0040095     URL     pmid: 16533068
[67] Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present and Future. The Science Plan for the International Ocean Discovery Program 2013-2023[R]. Washington DC: Integrated Ocean Drilling Program, 2011.
[68] Yin Qi, Fu Bingbing, Li Bingyu, et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre[J]. PLoS ONE, 2013, 8(2): e55148.
doi: 10.1186/1746-1596-7-63     URL    
[69] Zhang Yao, Liang Pan, Xie Xiabing, et al. Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP expedition 349, South China Sea[J]. Marine Geology, 2017, 394: 125-132.
doi: 10.1016/j.margeo.2017.06.010     URL    
[70] Fang Jiasong, Kato C, Runko G M, et al. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor[J]. Frontiers in Microbiology, 2017,8:137.
doi: 10.3389/fmicb.2017.00137     URL     pmid: 28220112
[71] Cao Huiluo, Wang Yong, Lee O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge[J]. Mbio, 2014, 5(1): e00980.
doi: 10.1128/mBio.00980-13     URL     pmid: 3903282
[72] Jiang Lijing, L’Haridon S, Jebbar M, et al. Complete genome sequence and whole-genome phylogeny of Kosmotoga pacifica type strain SLHLJ1 T from an East Pacific hydrothermal sediment[J].Standards in Genomic Sciences, 2017, 12(1): 3.
doi: 10.1186/s40793-016-0214-2     URL     pmid: 28074121
[73] Xu Hongxiu, Jiang Lijing, Li Shaoneng, et al. Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic[J]. Acta Microbiologica Sinica, 2016, 56(1):88.
URL     pmid: 27305783
[74] Jiang Lijing, Xu Hongxiu, Zeng Xiang, et al. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter[J]. Research in Microbiology, 2015, 166(9): 677-687.
doi: 10.1016/j.resmic.2015.05.002     URL     pmid: 26026841
[75] Zhao Weishu, Zeng Xianping, Xiao Xiang.Thermococcus eurythermalis sp. nov., A conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 30-35.
doi: 10.1099/ijs.0.067942-0     URL     pmid: 25288278
[76] Zhao Weishu, Xiao Xiang.Complete genome sequence of Thermococcus eurythermalis A501, a conditional piezophilic hyperthermophilic archaeon with a wide temperature range, isolated from an oil-immersed deep-sea hydrothermal chimney on Guaymas Basin[J]. Journal of Biotechnology, 2015, 193: 14-15.
doi: 10.1016/j.jbiotec.2014.11.006     URL    
[77] Zhang Yu, Li Xuegong, Bartlett D H, et al. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles[J]. Current Opinion in Biotechnology, 2015, 33: 157-164.
doi: 10.1016/j.copbio.2015.02.013     URL     pmid: 25776196
[78] Zhao Weishu, Xiao Xiang.Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5): 470-481.
doi: 10.1360/N052017-00056     URL    
[79] Niu Mingyang, Fan Xibei, Zhuang Guangchao, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea[J]. FEMS Microbiology Ecology, 2017, 93(9),doi:10.1093/femsec/fix101.
doi: 10.1093/femsec/fix101     URL     pmid: 28934399
[80] Niu Mingyang, Liang Qianyong, Feng Dong, et al. Ecosystems of cold seeps in the South China Sea[C]∥Jens Kallmeyer,ed. Life at Vents and Seeps. Berlin/Boston:Walter de Gruyter GmbH, 2017:139-160.
[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[4] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[5] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[6] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[7] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[8] 钟广法,游倩. 高分辨率FMS成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.
[9] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[10] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[11] IODP-China通讯员. 2013年后的大洋钻探——从INVEST会议看学科前沿[J]. 地球科学进展, 2009, 24(12): 1325-1329.
[12] 汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
[13] 刘志飞,拓守廷. IODP计划的新进展[J]. 地球科学进展, 2009, 24(12): 1318-1324.
[14] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[15] 张兰兰,陈木宏,向荣,张丽丽. 放射虫现代生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究[J]. 地球科学进展, 2006, 21(5): 474-481.
阅读次数
全文


摘要