[1] |
Jørgensen B B, Boetius A.Feast and famine—Microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10): 770-781.
doi: 10.1038/nrmicro1745
URL
pmid: 17828281
|
[2] |
ZoBell C E, Anderson Q A. Vertical distribution of bacteria in marine sediments[J]. American Association of Petroleum Geologists Bulletin, 1936, 20(3): 258-269.
doi: 10.1306/3d932db2-16b1-11d7-8645000102c1865d
URL
|
[3] |
ZoBell C E, Morita R Y. Barophilic bacteria in some deep sea sediments[J]. Journal of Bacteriology, 1957, 73(4): 563-568.
URL
pmid: 13428691
|
[4] |
ZoBell C E. Studies on the bacterial flora of marine bottom sediments[J]. Journal of Sedimentary Research, 1938, 8(1):10-18.
doi: 10.1306/D4268FD6-2B26-11D7-8648000102C1865D
URL
|
[5] |
Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos rift[J]. Science, 1979, 203: 1 073-1 083.
doi: 10.1126/science.203.4385.1073
URL
|
[6] |
Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994, 371(6 496): 410-413.
doi: 10.1038/371410a0
URL
|
[7] |
Wang Fengping, Lu Shulin, Orcutt B N, et al. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation[J]. Chinese Science Bulletin, 2013,58(4/5): 456-467.
doi: 10.1007/s11434-012-5358-x
URL
|
[8] |
Schrenk M O, Huber J A, Edwards K J.Microbial provinces in the subseafloor[J]. Annaual Review of Marine Science,2010,2:279-304.
doi: 10.1146/annurev-marine-120308-081000
URL
pmid: 21141666
|
[9] |
Johnson H P, Pruis M J.Fluxes of fluid and heat from the oceanic crustal reservoir[J]. Annual Review of Marine Science, 2003, 216(4):565-574.
doi: 10.1016/S0012-821X(03)00545-4
URL
|
[10] |
Fry J C, Parkes R J, Cragg B A, et al. Prokaryotic biodiversity and activity in the deep subseafloor biosphere[J]. FEMS Microbiology Ecology, 2008, 66(2): 181-196.
doi: 10.1111/j.1574-6941.2008.00566.x
URL
pmid: 18752622
|
[11] |
Orcutt B N, Sylvan J B, Knab N J, et al. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 361-422.
doi: 10.1128/MMBR.00039-10
URL
pmid: 3122624
|
[12] |
Whitman W B, Coleman D C, Wiebe W J.Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 6 578-6 583.
doi: 10.1073/pnas.95.12.6578
URL
|
[13] |
Pollack H N, Hurter S J, Johnson J R.Heat flow from the Earth’s interior: Analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280.
doi: 10.1029/93RG01249
URL
|
[14] |
Detrick R S.Seafloor spreading: Portrait of a magma chamber[J]. Nature, 2000, 406(6 796): 578-580.
doi: 10.1038/35020671
URL
pmid: 10949284
|
[15] |
Fisher A T.Marine hydrogeology: Recent accomplishments and future opportunities[J]. Hydrogeology Journal, 2005, 13(1): 69-97.
doi: 10.1007/s10040-004-0400-y
URL
|
[16] |
Lin Huei-Ting, Cowen J P, Olson E J, et al. Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks[J]. Geochimica et Cosmochimica Acta, 2012, 85: 213-227.
doi: 10.1016/j.gca.2012.02.017
URL
|
[17] |
Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor[J]. Trends in Microbiology, 2005, 13(9): 449-456.
doi: 10.1016/j.tim.2005.07.005
URL
pmid: 16054363
|
[18] |
Wheat C G, McManus J, Mottl M J, et al. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink[J]. Geophysical Research Letters, 2003, 30(17): 1 895.
doi: 10.1029/2003GL017318
URL
|
[19] |
Reysenbach A L, Banta A B, Boone D R, et al. Biogeochemistry: Microbial essentials at hydrothermal vents[J]. Nature, 2000, 404(6 780): 835.
doi: 10.1038/35009029
URL
pmid: 10786781
|
[20] |
Wang Fengping, Zhou Huaiyang, Meng Jun, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 840-4 845.
doi: 10.1073/pnas.0810418106
URL
|
[21] |
Huber J A, Butterfield D A, Baross J A.Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat[J]. Applied and Environmental Microbiology, 2002, 68(4): 1 585-1 594.
doi: 10.1128/AEM.68.4.1585-1594.2002
URL
|
[22] |
Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4): 874-884.
doi: 10.1111/j.1462-2920.2007.01505.x
URL
pmid: 18201197
|
[23] |
Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8): 2 158-2 171.
doi: 10.1111/j.1462-2920.2011.02463.x
URL
pmid: 21418499
|
[24] |
Lonsdale P.A deep-sea hydrothermal site on a strike-slip fault[J]. Nature, 1979, 281: 531-534.
doi: 10.1038/281531a0
URL
|
[25] |
Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226: 965-968.
doi: 10.1126/science.226.4677.965
URL
pmid: 17737352
|
[26] |
Tyler P A, Young C M.Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208.
doi: 10.1017/S0025315499000235
URL
|
[27] |
Gibson R N, Atkinson R J A, Gordon J D M. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology: An Annual Review, 2005, 43: 1-46.
URL
|
[28] |
D’Hondt S L, Jorgensen B B, Miller D J, et al. Proceedings of the Ocean Drilling Program, Initial Reports,201[R].Ocean Drilling Program, Texas A & M University,2003, doi:10.2973/odp.proc.ir.201.2003.
|
[29] |
Expedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management Internationalxpedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management International, Inc.,2010,doi:10.2204/iodp.pr.331.2010.
|
[30] |
Expedition 329 Scientists. South Pacific Gyre Subseafloor Life[R]. IODP Preliminary Report, 329, 2011, doi: 10.2204/iodp.pr.329.2011.
|
[31] |
Expedition 336 Scientists. Mid-Atlantic Ridge Microbiology: Initiation of Long-Term Coupled Microbiological, Geochemical, and Hydrological Experimentation Within the Seafloor at North Pond, Western Flank of the Mid-Atlantic Ridge[R]. IODP Preliminary Report, 336, 2011, doi: 10.2204/iodp.pr.336.2011.
|
[32] |
Expedition 337 Scientists. Deep Coalbed Biosphere off Shimokita: Microbial Processes and Hydrocarbon System Associated with Deeply Buried Coalbed in the Ocean[R]. IODP Preliminary Report, 337, 2012, doi:10.2204/iodp.pr.337.2012.
|
[33] |
Früh-Green G L, Orcutt B N, Green S, et al. Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life[R]. International Ocean Discovery Program Preliminary Peports, 2016,doi:10.14379/iodp.pr.357.2016.
|
[34] |
Heuer V B, Inagaki F, Morono Y, et al. Expedition 370 preliminary report: Temperature limit of the deep biosphere off muroto[J]. International Ocean Discovery Program Preliminary Peports,2017, doi:10.14379/iodp.pr.370.2017.
doi: 10.14379/iodp.pr.370.2017
URL
|
[35] |
Santelli C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust[J]. Nature, 2008, 453(7 195): 653.
doi: 10.1038/nature06899
URL
pmid: 18509444
|
[36] |
Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299(5 603): 120-123.
doi: 10.1126/science.1075653
URL
pmid: 12511653
|
[37] |
Jungbluth S P, Grote J, Lin Huei-Ting, et al. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank[J]. The ISME Journal, 2013, 7(1): 161-172.
doi: 10.1038/ismej.2012.73
URL
pmid: 3526168
|
[38] |
Zhang Xinxu.Abundance, Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms on the Western Flank of the Mid-Atlantic Ridge[D]. Shanghai: Shanghai Jiao Tong University,2016.
|
|
[张新旭. 大西洋中脊西侧翼洋壳微生物多样性、功能和代谢潜能研究[D]. 上海:上海交通大学,2016.]
|
[39] |
Zhang Xinxu, Feng Xiaoyuan, Wang Fengping.Diversity and metabolic potentials of subsurface crustal microorganisms from the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):363.
doi: 10.3389/fmicb.2016.00363
URL
pmid: 2332522
|
[40] |
Zhang Xinxu, Fang Jing, Bach W, et al. Nitrogen stimulates the growth of subsurface basalt-associated microorganisms at the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):633.
doi: 10.3389/fmicb.2016.00633
URL
|
[41] |
Mason O U, Di Meo-Savoie C A, Van Nostrand J D, et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts[J]. The ISME Journal, 2009, 3(2): 231.
doi: 10.1038/ismej.2008.92
URL
pmid: 18843298
|
[42] |
Kallmeyer J, Pockalny R, Adhikari R R, et al. Global distribution of microbial abundance and biomass in subseafloor sediment[J]. Proceedings of the National Academy of Sciences, 2012, 109(40): 16 213-16 216.
doi: 10.1073/pnas.1203849109
URL
pmid: 22927371
|
[43] |
Lloyd K G, May M K, Kevorkian R T, et al. Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor[J]. Applied and Environmental Microbiology, 2013, 79(24): 7 790-7 799.
doi: 10.1128/AEM.02090-13
URL
pmid: 3837824
|
[44] |
D’hondt S, Inagaki F, Zarikian C A, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments[J]. Nature Geoscience, 2015, 8(4): 299-304.
doi: 10.1038/ngeo2387
URL
|
[45] |
Inagaki F, Hinrichs K U, Kubo Y, et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor[J]. Science, 2015, 349(6 246): 420-424.
doi: 10.1126/science.aaa6882
URL
pmid: 26206933
|
[46] |
Liu Changhong, Huang Xin, Xie Tianning, et al. Exploration of cultivable fungal communities in deep coal-bearing sediments from~1.3 to 2.5 km below the ocean floor[J]. Environmental Microbiology, 2017, 19(2): 803-818.
doi: 10.1111/1462-2920.13653
URL
pmid: 28028923
|
[47] |
Lomstein B A, Langerhuus A T, D’hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment[J]. Nature, 2012, 484(7 392): 101.
doi: 10.1038/nature10905
URL
pmid: 22425999
|
[48] |
Braun S, Mhatre S S, Jaussi M, et al. Microbial turnover times in the deep seabed studied by amino acid racemization modelling[J]. Scientific Reports, 2017, 7(1):5 680.
doi: 10.1038/s41598-017-05972-z
URL
pmid: 28720809
|
[49] |
Morono Y, Terada T, Nishizawa M, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells[J]. Proceedings of the National Academy of Sciences, 2011, 108(45): 18 295-18 300.
doi: 10.1073/pnas.1107763108
URL
pmid: 21987801
|
[50] |
Trembath-Reichert E, Morono Y, Ijiri A, et al. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds[J]. Proceedings of the National Academy of Sciences, 2017,114(44):E9206-E9215.
doi: 10.1073/pnas.1707525114
URL
pmid: 29078310
|
[51] |
He Ying, Li Meng, Perumal V, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments[J]. Nature Microbiology, 2016,(1): 16 035.
doi: 10.1038/nmicrobiol.2016.35
pmid: 27572832
|
[52] |
Evans P N, Parks D H, Chadwick G L, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics[J]. Science, 2015, 350(6 259): 434-438.
doi: 10.1126/science.aac7745
URL
pmid: 26494757
|
[53] |
Davis E E, Becker K, Pettigrew T L, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 139[R].Ocean Drilling Program, Texas A & M University, 1992.
|
[54] |
Expedition 327 Scientists. Integrated Ocean Drilling Program Expedition 327 Preliminary Report Juan de Fuca Ridge-Flank Hydrogeology:The Hydrogeologic Architecture of Basaltic Oceanic Crust: Compartmentalization, Anisotropy, Microbiology, and Crustal-Scale Properties on the Eastern Flank of Juan de Fuca Ridge, eastern Pacific Ocean[R]. Integrated Ocean Drilling Program Management International, Inc., 2010, doi: 10.2204/iodp.pr.327.2010.
|
[55] |
Fisher A T, Wheat C G, Becker K, et al. Scientific and Technical Design and Deployment of Longterm, Subseafloor Observatories for Hydrogeologic and Related Experiments, IODP Expedition 301, Eastern Flank of Juan de Fuca Ridge[R]. College Station, TX Integrated Ocean Drilling Program Management International,Inc, 2005,doi:10.2204/iodp.proc.301.103.2005.
|
[56] |
State Key Laboratory of Marine Geology. Under Water Observatories: The Combination of Science and Technology[M]. Shanghai: Tongji University Press, 2011.
|
[57] |
Girguis P R, Cozen A E, DeLong E F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor[J]. Applied and Environmental Microbiology, 2005, 71(7): 3725-3733.
doi: 10.1128/AEM.71.7.3725-3733.2005
URL
pmid: 1169053
|
[58] |
Deusner C, Meyer V, Ferdelman T G.High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane[J]. Biotechnology and Bioengineering, 2010, 105(3): 524-533.
doi: 10.1002/bit.22553
URL
pmid: 19787639
|
[59] |
Jagersma G C, Meulepas R J W, Heikamp-de Jong I, et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment[J]. Environmental Microbiology, 2009, 11(12): 3 223-3 232.
doi: 10.1111/j.1462-2920.2009.02036.x
URL
pmid: 19703218
|
[60] |
Zhang Yu, Arends J B A, Van de Wiele T, et al. Bioreactor technology in marine microbiology: From design to future application[J]. Biotechnology Advances, 2011, 29(3): 312-321.
doi: 10.1016/j.biotechadv.2011.01.004
URL
pmid: 21251973
|
[61] |
Zhang Yu, Maignien L, Zhao Xianxian, et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor[J]. BMC Microbiology, 2011, 11(1): 137.
doi: 10.1186/1471-2180-11-137
URL
pmid: 21676272
|
[62] |
Lasken R S.Single-cell genomic sequencing using multiple displacement amplification[J]. Current Opinion in Microbiology, 2007, 10(5): 510-516.
doi: 10.1016/j.mib.2007.08.005
URL
pmid: 17923430
|
[63] |
Beal E J, House C H, Orphan V J.Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5 937): 184-187.
doi: 10.1126/science.1169984
URL
pmid: 19589998
|
[64] |
Behrens S, Lösekann T, Pett-Ridge J, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS[J]. Applied and Environmental Microbiology, 2008, 74(10): 3 143-3 150.
doi: 10.1128/AEM.00191-08
URL
|
[65] |
Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group[J]. Nucleic Acids Research, 2010, 39(8): 3 204-3 223.
doi: 10.1093/nar/gkq1228
URL
pmid: 3082918
|
[66] |
Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(12): 520-536.
doi: 10.1371/journal.pbio.0040095
URL
pmid: 16533068
|
[67] |
Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present and Future. The Science Plan for the International Ocean Discovery Program 2013-2023[R]. Washington DC: Integrated Ocean Drilling Program, 2011.
|
[68] |
Yin Qi, Fu Bingbing, Li Bingyu, et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre[J]. PLoS ONE, 2013, 8(2): e55148.
doi: 10.1186/1746-1596-7-63
URL
|
[69] |
Zhang Yao, Liang Pan, Xie Xiabing, et al. Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP expedition 349, South China Sea[J]. Marine Geology, 2017, 394: 125-132.
doi: 10.1016/j.margeo.2017.06.010
URL
|
[70] |
Fang Jiasong, Kato C, Runko G M, et al. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor[J]. Frontiers in Microbiology, 2017,8:137.
doi: 10.3389/fmicb.2017.00137
URL
pmid: 28220112
|
[71] |
Cao Huiluo, Wang Yong, Lee O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge[J]. Mbio, 2014, 5(1): e00980.
doi: 10.1128/mBio.00980-13
URL
pmid: 3903282
|
[72] |
Jiang Lijing, L’Haridon S, Jebbar M, et al. Complete genome sequence and whole-genome phylogeny of Kosmotoga pacifica type strain SLHLJ1 T from an East Pacific hydrothermal sediment[J].Standards in Genomic Sciences, 2017, 12(1): 3.
doi: 10.1186/s40793-016-0214-2
URL
pmid: 28074121
|
[73] |
Xu Hongxiu, Jiang Lijing, Li Shaoneng, et al. Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic[J]. Acta Microbiologica Sinica, 2016, 56(1):88.
URL
pmid: 27305783
|
[74] |
Jiang Lijing, Xu Hongxiu, Zeng Xiang, et al. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter[J]. Research in Microbiology, 2015, 166(9): 677-687.
doi: 10.1016/j.resmic.2015.05.002
URL
pmid: 26026841
|
[75] |
Zhao Weishu, Zeng Xianping, Xiao Xiang.Thermococcus eurythermalis sp. nov., A conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 30-35.
doi: 10.1099/ijs.0.067942-0
URL
pmid: 25288278
|
[76] |
Zhao Weishu, Xiao Xiang.Complete genome sequence of Thermococcus eurythermalis A501, a conditional piezophilic hyperthermophilic archaeon with a wide temperature range, isolated from an oil-immersed deep-sea hydrothermal chimney on Guaymas Basin[J]. Journal of Biotechnology, 2015, 193: 14-15.
doi: 10.1016/j.jbiotec.2014.11.006
URL
|
[77] |
Zhang Yu, Li Xuegong, Bartlett D H, et al. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles[J]. Current Opinion in Biotechnology, 2015, 33: 157-164.
doi: 10.1016/j.copbio.2015.02.013
URL
pmid: 25776196
|
[78] |
Zhao Weishu, Xiao Xiang.Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5): 470-481.
doi: 10.1360/N052017-00056
URL
|
[79] |
Niu Mingyang, Fan Xibei, Zhuang Guangchao, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea[J]. FEMS Microbiology Ecology, 2017, 93(9),doi:10.1093/femsec/fix101.
doi: 10.1093/femsec/fix101
URL
pmid: 28934399
|
[80] |
Niu Mingyang, Liang Qianyong, Feng Dong, et al. Ecosystems of cold seeps in the South China Sea[C]∥Jens Kallmeyer,ed. Life at Vents and Seeps. Berlin/Boston:Walter de Gruyter GmbH, 2017:139-160.
|